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bayesian inference

LVK, PRL 116, 061102 (2016)
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hierarchical bayesian inference

LVK, Phys. Rev. X 13, 011048 (2023)

20 10 50 TR0 100
my [M)

population modelling!
infer population hyperparameters (power
law slope, width of a Gaussian, etc.)

ensemble of detections



population modelling
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population modelling
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In HBI, we mus

specify a model!
Models can be

100

flexible or have
astrophysical
motivations
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a mass-spin correlation?

Ma & Fuller, Ap) 952 53 (2023)
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how do BBHs form?
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field channels

*hierarchical mergers...




How do we construct a
model that captures this
correlation?

Is it possible to use this
model to recover such a
complex correlation with

future detectors?

(Future work) What is the
effect of contamination
from a different
sub-population of sources,
e.g. hierarchical mergers?
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how do we model the correlation?

/ We want to target the correlation between the mass (m) and spin
magnitude («) of the spun-up star
e To do so, we use spin sorting: we label the higher-spinning BH as A and the
lower-spinning BH as B (Biscoveanu 2021)

o Can do this entirely in post-processing of PE samples

e The correlation from tidal spin-up is very uncertain, and we don't want to
make too many assumptions about the functional form

o Allow for a linear correlation between a, and m,

o Hierarchically infer the slope, y-intercept (capture Oth + 1st order
correlation)

e Overall, we use the Power Law + Peak mass model + a spin model
conditional on m,
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the model

—

Model a, asa Gaussian distribution truncated on [0, 1] whose mean and
width are allowed to vary linearly with m ,:

7r(a,A | may, A) = N(CLA; uA(mA, A), 1010gaA(mA’A), 0, 1)

my
A) = —1
pa(ma,A) = pao + 9y, 44 ( 100, )

my
log UA(mAa A) = logoao + 5logo, AA ( 10 Mo, - ]-)




the model

—

Model a, asa Gaussian distribution truncated on [0, 1] whose mean and
width are allowed to vary linearly with m ,:

m(aa|maA) = N(aa; pa(ma,A),10"874m08) 0 1)
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the model
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Model lasa Gaussian distribution truncated on [-1, 1] whose mean and
width are allowed to vary linearly with m ,:

(Xett | M Ay A) = N (Xett; p(ma, A),10°87ma8) 1 1)
-
e 1855

log U(mA’ A) IOg UO +[510ga (

. -




methods

We perform hierarchical
inference with this model on

that
represents a mock catalog of
future detections.

We draw 1000 perfect detections
(no selection effects, 1 PE
sample per event) from some
model - this isn't a bad
approximation for 3G detectors!

A

simulated sources

d )
1. drawing directly from the models
to check that the hierarchical inference is
working - validation study

\ J

é )
2. drawing from an astrophysically
motivated distribution
investigate what happens when we
mis-specify the model. do we still capture
a correlation?

\, J
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validation study results

No correlation is recovered in the absence of a true
underlying correlation — no bias towards a correlation
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1.0

validation study results |-

The correct correlation is recovered (within 90% Cl) in
the presence of a true underlying correlation
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simulated sources

Ma & Fuller, Ap} 952 53 (2023)
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simulated sources
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increasing width?
Due to the deviation from the linear model at higher masses, the Gaussian is forced to
broaden to better capture these points-this is a feature of model mis-specification
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bonus: inference on gwtc-3 data

(we didn't find anything)
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next steps - improving injections

‘ simulating PE, )

detector noise

Currently, we assume perfect
detections, no selection effects,
N=1000 events.

Want more realistic
consideration of catalog size,
detector PSDs, PE posteriors,

selection biases for future
detectors (04, O5, 3G, etc.)

distribution

Currently, we take a single curve and add

1. Capture the dimension of initial orbital
period, and marginalize across a
distribution of initial periods

2. Take into account astrophysical
selection effects: not all initial periods
will merge, given observed redshift

Gaussian noise. More realistically, we should:

4 better parameterize underlying .

J
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sneak peek:

aTsu mA» orb, z

where A(P

orb 1 1+e‘;’;P( 0052(:;2//]\1\//113) 6))} + C( orb, z) if Porb,i <1 day
if Porb,i > 1 day

=6(1 — P/day))?, C(P)=0.7(1 — P/day))>.
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(better parameterize underlying .
distribution

Currently, we take a single curve and add
Gaussian noise. More realistically, we should:

1. Capture the dimension of initial orbital
period, and marginalize across a
distribution of initial periods

2. Take into account astrophysical
selection effects: not all initial periods
will merge, given observed redshift
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.

Created a simple linear
model that uses spin
sorting to capture the

mass-spin correlation in

the tidal spin-up of
binary black holes that
form in the field

J

summary

Confirmed the validity of
using this kind of model
using injections

.

Demonstrated the

ability to recover a
correlation from
injections with a

non-linear correlation,

and showed that this
kind of model

mis-specification can
lead to biases
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correlation also observed with [

. : : N
Due to the deviation from the linear model at higher masses, the Gaussian |s¥orced to
broaden to better capture these points-this is a feature of model mis-specification
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