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The LIGO-Virgo-KAGRA collaboration provides low-latency (near-real time) localization using the signal-to-noise
ratio measured for a single point in the search parameter space. Parameter estimation pipelines subsequently
samples the full parameter space to obtain more accurate estimates of the localization. However, this process is
computationally expensive. The multi-messenger detection of the binary neutron star merger GW170817 confirmed
the need for accurate and fast data products. Some detection pipelines utilize singular value decomposition to
reduce the filtering cost. This project uses machine learning to input signal-to-noise ratios from singular value
decomposition time-series into a simulation-based inference (SBI), a likelihood free inference algorithm, which
outputs a posterior with an accurate parameter estimation, such as a sky map, to localize compact binary
coalescences and infer other source properties.

I. INTRODUCTION

Gravitational Waves (GWs) were first detected in 2015
by the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) [1]. GWs are physical ripples in the fabric of
space and time, stretching and compressing space. GWs
originate from compact binary coalescence (CBC), the in-
spiral and merge of two extremely massive objects such as
black holes or neutron stars. GWs can also originate from
other exotic events in the universe, such as supernovae,
but this project will focus solely on CBCs. GWs can be
detected by laser interferometers such as LIGO, which
uses laser interference to measure the impact of passing
GWs [1]. Information encoded in the GWs signal de-
tected by LIGO can give scientists valuable information
about each source, like distance and location.

The first binary neutron star merger, detected by
LIGO in August 2017 [2], was a breakthrough for our
understanding of astrophysics. The Europeans Space
Agency’s INTEGRAL telescope and NASA’s Fermi
Gamma-ray Space telescope observed a brief gamma-
ray burst from the source [3]. The Hubble Space Tele-
scope and The Chandra X-ray Telescope also detected
electromagnetic (EM) radiation from the same direction
[3]. Further evidence shows that the James Webb Space
Telescope detected mid-infrared emission of exotic heavy-
element tellurium [4]. Analysis of the GW data and the
EM counterparts support that the progenitor was most
likely a binary neutron star merger. The event is impor-
tant for our understanding of the universe due to its GW
and EM counter parts [2, 5, 6]. Studies have shown ef-
forts towards low-latency GW detection [7]. This project
aims to improve the accuracy of our super-low-latency
data products.

Filtering analysis computes a comparison between a
large number of modeled CBC waveforms (Figure 1) and
the detector output to produce a signal-to-noise ratio
(SNR). SNRs can contain GW signals from compact bi-
naries covered by background noise [8]. The data set in
Figure 1 contains waveforms accounting for a variety of
masses and spins, which encompasses information about
source parameters, but seem to look similar in appear-
ance.

GW data from CBCs are dependant on a high num-
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FIG. 1: Simulated waveform candidates. H, u is an
unit-less measurement, referred to as strain. Strain is
the fractional change in distance the lasers are stretched
or compressed by a passing gravitational wave, relative
to the original length.

ber of physical dimensions, such as mass, spin, distance,
and inclination. Previous studies face issues in quanti-
fying these dimensions due to the high parameter space
[9-11]. GW strain observed on earth depends on an ar-
ray of 15 parameters. The parameters are as followed:
mass of the primary object, mass of the secondary ob-
ject, luminosity distance, the integration constant, time
of coalescence, position of ascension, position of declina-
tion, inclination, polarization angle, the spin, angle, and
orientation of the primary object, and the spin, angle,
and orientation of the secondary object [12]. It is diffi-
cult to apply these methods over a fixed sample of data,
as well as a fixed number of dimensions to attain qual-
ity results [11], hence the extreme efforts and costs full
parameter estimation process require. However, LIGO is
able to create low-latency sky maps and measure SNRs
by imposing constraints on the signal parameter space.

A. Singular Value Decomposition

We plan to generate sky maps more efficiently and ac-
curately by using singular value decomposition (SVD)
(Equation 1) on original waveforms and mapping them



FIG. 2: The result of abstract waveforms computed
through SVD using original gravitational waveforms.

onto an abstract parameter space. Original waveforms
can be transformed through SVD which reduces the
amount of GW filtering required to analyze a given re-
gion of a parameter space of compact binary coalescence
[13].

In Equation 1, i are the GW time series, a are recon-
struction coefficients, and u are SVD abstract basis vec-
tors, all indexed by p [13]. Equation 2 represents SNR,
p, which is equal to the noise-weighted inner product of a
waveform template and raw strain data, d. Substituting
Equation 1 in for h, we are able to use distributive prop-
erties and replace the new inner product with the SVD
SNR, @, shown in Equation 3, and create SNR Equation
4, which can be compared similarly with Equation 1.

h = Zauu“ (1)
p=<hl|d> (2)

Q=<uld> (3)

pP= ZQMQ# (4)

Equation 1 is a breakdown of each waveform template
into SVD basis vectors, where as Equation 4 is a break-
down of each original SNR into SVD SNRs. SVD basis
vectors (Figure 2) are abstract and do not contain any
concrete evidence regarding dimensions we hope to re-
veal. All of the abstract waveforms are orthogonal and
do not overlap with one another [9, 10].

B. Machine Learning

The modeled waveforms represented in Figure 1 can be
compiled into a parameter space shown in Figure 3, where

FIG. 3: The figure represents pre-SVD modeled
waveforms under a parameter space. The red X
indicates a waveform that can be created with the SVD
waveforms extracted from the space with high accuracy.

each point represents an individual template. Computing
abstract waveforms from SVD that will fit in the gaps of
the sample space in Figure 2 through a neural network
is an example of how apply machine learning. A specific
number of SVDs can be added together in various ways to
create each template in the space. The quantity of SVDs
can vary from 5 to 100 depending on the characteristics of
the space. Low-latency sky maps are created by selecting
one template. Since the empty space compares to the
plotted templates with high accuracy, it is possible to
cover more area in the space by using the SVDs instead
of just a single waveform. This means that we can cover a
larger area of the template space by using the set number
of SVDs that correspond to the waveforms in that space.

Computationally comparing SVD waveforms with orig-
inal waveforms can be an extensive process. Instead of
waiting to map the SVD for comparison with the original
waveforms, our project looks to input the abstract wave-
forms through a neural network to compute a likelihood
of the physical properties of a GW source. Normally, pos-
terior probability distribution calculations are done after
a gravitational wave is detected. Using simulation based
inference, machine learning can help us “front-load” the
expensive computations to build a posterior and calcu-
late likelihood of parameters, given previously detected
parameters. The use of a neural network has been con-
firmed and tested as a reliable structure for a machine
learning algorithm [14].

II. METHODS

The project will attempt to generate sky maps more
efficiently and accurately, by 1) using abstract wave-
forms formulated by singular value decomposition and
2) utilizing machine learning techniques such as simu-
lation based inference (SBI) that would reduce compu-
tational costs while producing a low-latency, sky map
result. The project will use neural networks to connect
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FIG. 4: A cumulative area distribution comparison of
BILBY and BAYESTAR results. BILBY surpasses
BAYESTAR with higher frequencies at smaller areas of

degrees?.

abstract SNRs that are produced by SVD to the physical
properties of GW candidates. sky maps will be computed
from source localization and distance.

SVD SNRs will be ingested into a SBI motivated
framework to compile a parameter estimation and
demonstrate dimension probability. We will run simu-
lations to train the algorithm, allow it to learn the shape
of our current data, and build a posterior. From this,
we can then compare simulated source parameters and
test the validity of the posterior. Our final goal will be
to construct an accurate sky map showing the 50% and
90% confidence areas of the sky where the source is lo-
cated.

We researched two sky map algorithms. BAYESTAR,
which computes low-latency sky maps by assuming a sin-
gular template [15], like represented in Figure 3, and
BILBY, which takes many templates into account for a
better localized sky map [16]. However, BILBY has a
computing time on the order of hours to days. We ex-
tracted data in square degrees and compared the two sys-
tems in a 90% confidence areas. To filter data and study
true results, criteria have been set at signal-to-noise sig-
nal greater than 9, and a false alarm ratio (FAR) less
than 1 yr~! or less than 2 yr—!. We will also refer back
to these systems with the project results as a compari-
son tool. BAYESTAR and BILBY data comes from mock
data challenges (MDCs) that were run in the lead up to
04. MDCs look at all uploads done to a low-latency
database and compares the two sets of sky maps.

In Figures 4 and 5, evidence shows that BILBY’s com-
plex computations can produce a more accurate sky map
than BAYESTAR'’s low-latency algorithm. The project
strives to achieve each system’s strengths of low-latency
and more accurate localization with the use of SVDs and
machine learning.
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FIG. 5: The Probability-Probability (PP) plot visually
compares the area percentiles of the two systems. A
steeper line represents better localization accuracy,

while a flatter line indicates worse accuracy.

III. RESULTS

By utilizing LALSuite, a public collection of gravi-
tational wave software, we are able to set boundaries
for each parameter and simulate injections with vary-
ing parameters to binary coalescence gravitational wave
sources.

Due to the high level of dimensions applicable to binary
coalescences, we began testing by setting all parameters
in the LALApps configuration to fixed or 0, which al-
lowed distance to be a free parameter, with boundaries
of 100 to 1000 megaparsecs (mpc). Varying sample sizes
from 10000 injections (5000 from each interferometer)
were processed to each include a varying distance and
an SVD time-series, and added into a training network,
which resulted in a posterior. Plotting posteriors demon-
strated about 800 samples were needed to train the net-
work to achieve accurate results. To test significance, we
are using measured SVD responses for known sources and
comparing how well our network predicts the true value.
Randomly selected true distance values were displayed
against posteriors. 27% of true values lied outside the
predicted distribution (73% accuracy rate). Half of the
true values that fell outside the posterior, were under-
estimated due to the parameter boundary in place, for
there are signals that have been detected from distances
further than 1000 mpc. If a larger distribution of dis-
tances were included in the training, posteriors would be
underestimating true values at a smaller percentage.

After one dimensional training and plotting success, a
second free dimension, inclination, was added to the in-
jections. With a total of 10000 injections, 3250 samples
were used to draw accurate posteriors. Approximately
15% of true values fell outside inclination distribution
while zero true values fell outside the distance distribu-
tion, giving us a total parameter accuracy rate of 85%
accuracy rate. To check for possible bad data, more pos-
teriors were creating using data from H1 only. Between



posteriors drawn from HI1 solely and H1 and L1, distri-
butions had an increase in variance for H1 and similar
accuracy when predicting true values.

To set fourth our goal of an accurate sky map, the next
trial included two localizing parameters, right ascension
and declination. 60000 total injections were created and
9000 samples were drawn to plot accurate posteriors. Out
of 60 parameters in 4 dimensions, 23% of true values fell
outside the posterior (77% accuracy rate). Initial ob-
servations from the 4 dimensional posteriors include the
lacking stability of right ascension distribution. Even at
an increased number of samples, there is a high variance
for the distribution. In a few cases between 8000 and
10000 samples, distance has a difficult time displaying a
solidified distribution.

The posteriors drawn in first three trials have an aver-
age accuracy of about 78.3%, but the final goal is to reach
a 90% accuracy rate. Furthermore, the precision of the
distribution still struggles. Due to these observations, we
plan to increase both precision and accuracy by adjusting
the neural network input shape. Due to the formatting
required by SBI, SVD data matrices were compressed
into a one dimensional list. This formatting can forego
some vital information about our data, where the frame-
work can struggle with separating each waveform from
the next. Adjustments were made to the neural network
to preserve matrix structure, in hopes for better results
in accuracy and precision.

After adjustments to the neural network, initial obser-
vations show an accuracy rate for various sample sizes
of 83% or greater. Sample size of 15000 represented

the greatest accuracy and precision. Each distribution
is mid-narrow in precision, with a total accuracy rate of
90%. Distance and declination are precise and accurate.
We notice a bimodal variance for right-ascension distribu-
tions and uniform distributions for inclination. However,
a bimodal distribution is excepted for inclination. These
observations encourage more research into our data and
processes for the inclination parameter.

The next steps of the project involve adjusting vari-
ables deeper into our neural network. After the network
input adjustment, our neural network works as an image
classifier, due to the matrix input shape. Convolutions
neural networks (CNNs) are common in image classifica-
tion and are used to categorize patterns and shapes. We
will adjust 8 factors included in the CNN such as kernel
size and learning rate, to achieve accurate posterior and
sky map results.

IV. IMPLICATIONS

Data attainment and detection times have been min-
imized in recent research. Data interpretation still re-
quires extreme expenses and efforts. The goal to calcu-
late physical properties of the CBC from the abstract
waveforms efficiently will allow a beginning to instanta-
neous review of possible overlaps in GW with EM data.
This multi-messenger cooperation allows astronomers to
view the universe through a lens never examined before.
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