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We consider the possibility of gravitationally lensed pairs of gravitational waves, a phenomenon that has
predominantly been studied in regard to electromagnetic waves. Under the strong lensing hypothesis, lensed
gravitational waves from the same source are identical in waveform apart from a relative arrival time delay,
an overall scaling factor in amplitude and a phase shift. It is possible that strong lensing produces magnified,
super-threshold events that are registered as a trigger and demagnified, subthreshold events that get buried in
the noise background. To remedy this, we search for subthreshold triggers using the gstLAL-based TargetEd
Subthreshold Lensing SeArch (TESLA) pipeline, which considers the catalog of registered gravitational waves
as potential lensed, super-threshold events. In this research, we incorporate a post-processing search for sub-
threshold counterparts using a ranking statistic calculation based on the time delay and magnification probability
distributions for a given lens model.

INTRODUCTION

While the study of gravitational lensing of light has been
confirmed and widely studied, the possibility of gravitational
lensed gravitational waves is still being explored. After an-
alyzing data from the first half of LIGO/VIRGO’s third ob-
serving run (O3a), the LVK collaboration (LIGO, VIRGO and
KAGRA) concluded that there was no presence of strong lens-
ing of gravitational waves (GWs)[1]. However, lensed coun-
terparts are likely overlooked due to the effects of demagni-
fication in signal amplitude. The accuracy and impact of our
analyses of celestial bodies, their interactions, and spacetime
itself will drastically improve when strong lensing of GWs
is successfully identified. This includes better estimations
of source parameters such as red-shift and chirp mass given
the possibility of joint parameter estimation, or using multiple
signals from the same source to better constrain the possible
values. Additionally, while the distribution of dark matter is
traditionally analyzed using its lensing effect of a background
source’s light, gravitational lensing of gravitational waves will
expand this search to include lensed gravitational waves from
less visible sources such as merging black holes. We can also
use the relative time delay between lensed events to better con-
strain the Hubble constant, which describes the rate of expan-
sion of the universe. Lastly, gravitational lensing of GWs pro-
vides us with new ways of testing general relativity and allows
us to study various relativistic systems[2].

While participating in the 2023 LIGO SURF program, I
conducted research aimed at improving the detectors’ search
sensitivity in registering sub-threshold, strongly lensed events,
where sub-threshold describes the lensed counterpart likely
buried in the noise background. To accomplish this, I em-
ployed Bayesian hypothesis testing, comparing the posteriors
of lens model dependent parameters, specifically the magni-
fication factor and time delay, for the cases of lensing and
no lensing. This was implemented as post-processing script
in the gstLAL-based Targeted Subthreshold Lensing Search
(TESLA) pipeline and returns the Bayes factor for a trigger
using an already registered gravitational wave as the target
lensed counterpart. In essence, a bivariate probabilities den-

sity is created from sample data obtained from a lens model,
which is used in evaluating the likelihood real data in the
search.

In this proposal, I provide background information on
LIGO, gravitational waves, gravitational lensing, and the gst-
LAL and gstLAL-based TESLA search pipelines. I then fur-
ther explain the objectives of this project and describe the
methodology in accomplishing this research, including our
implementation of Bayes theorem and the development of our
hypothesis models. Finally, I share the results of this project
and include closing remarks on future work to be done.

BACKGROUND

What is LIGO?

Short for Laser Interferometer Gravitational Wave Obser-
vatory, LIGO searches for gravitational wave signals coming
from deep space, likewise making the smallest and most accu-
rate measurements to date. Similar experiments began in the
1960s and, with the development and further improvement of
interferometric detectors, LIGO’s first detector was completed
in the early 2000s. The (now updated) detectors are located
in Hanford, Washington and Livingston, Louisiana, making
them around 3000 kilometers in distance from each other, or
0.01 lightsecond. The detector’s large separation helps de-
termine any local noise (i.e. environmental or instrumental)
and also helps confirm gravitational wave events when reg-
istered on both with the appropriate time delay. They also
serve in measuring wave polarizations and source sky local-
izations [2]. To establish further confidence in these readings,
the LIGO Scientific Collaboration (LSC) joined teams with
Italy’s VIRGO project in 2007. The next year, the National
Science Foundation provided funding for Advanced LIGO,
which became fully functional in 2015[3].

On September 14, 2015, during the first official observing
run O1, both LIGO detectors simultaneously observed gravi-
tational wave GW150914, making it the first direct detection
of the phenomenon, which was predicted by Einstein’s Gen-



2

eral Theory of Relativity using the nonlinear electrodynamics
of black holes. Analysis showed GW150914 was in fact the
coalescence of a binary black hole, which also marked the first
observation of such an event.[2].

As of the second half of LIGO’s third observing run (O3B),
there’s been a total of 90 observed events[4]. This includes the
previously described GW150914[2] and GW170817, which
was the gravitational wave emitted from a binary neutron star
(BNS) merger and the largest registered GW signal to date,
with a combined signal to noise ratio (SNR) of 32.4[5]. In
comparison, GW150914 had a combined SNR of 24, although
the VIRGO detector was not in operation at the time of the
event[2].

Advanced LIGO operates using a modified Michelson in-
terferometer, often called a Michelson-Morley interferometer.
Each arm of the detector has a length of 4 km, necessary be-
cause a gravitational wave can produce displacements as small
as 10−21m. The detector’s arms are placed in an L-shape be-
cause the compressions and expansions of spacetime caused
by a GW are orthogonal, causing the arms to experience dif-
ferent amounts of displacement when a gravitational wave
passes through. When this occurs, this difference in length
is given by the equation

∆L(t) = ∆Lx −∆Ly = h(t)L, (1)

where h(t) is the gravitational wave strain and L is arm
length.[2]. However, instead of measuring displacements
smaller than one-thousandth of a neutron, LIGO relies on the
interference of light to detect such small changes. To do this, a
laser beam is directed towards a beam splitter such that half of
the beam is directed down one arm and the other half down the
other arm. Each end has a mirror to reflect the beams, and the
reflected beams recombine at the photodetector, which is set
to have destructive interference when there is no GW present.
When a GW passes through, the length of the arms change
such that the recombined light instead produces constructive
interference. There is also a Fabry-Perot power-recycling cav-
ity that amplifies the power of the reflected wave from 20W
to 100 kW, further helping the photodetector register the en-
ergy spike [2]. We measure this power output, which is really
the phase difference between the recombined beams, and use
transformation tools to derive the potential gravitational wave
strain of the event. After this, we use further methods to deter-
mine if the signal is truly astrophysical in origin or if it simply
noise mimicking signal.

What is a Gravitational Wave?

To understand gravitational waves, one must first realize
the connection between space and time proposed by Einstein’s
General Theory of Relativity. Einstein began by exploring
the relationship between gravitational mass, mg , and inertial
mass, mi, which were simply assumed to be equal. Einstein
did not make this assumption and instead worked on deriving
the relationship from the bottom up. By studying the behavior

of objects in a gravitational field, he realized that these two are
equivalent only by accounting for the curvature of spacetime.
This path is called a geodesic, and under this hypothesis, the
equivalence of inertial and gravitational mass can be proven.

This led to the Equivalence Principle, which states that the
only truly inertial state of an object in a gravitational field is in
free-fall, or when it can move freely along its geodesic. This
state of free-fall is called an inertial reference frame, or IRF.
Instead of a force, Einstein proposed that gravity is a natural
consequence of energy and mass interacting with spacetime,
not each other. This is where the understanding of spacetime’s
fabric-like structure originates— the more massive an object
is, the more it curves its specific region of spacetime. This
ultimately led to the Einstein equation, which relates the ge-
ometry of spacetime to the distribution of matter and energy
within it. This equation shows the interdependence between
matter and spacetime or, as John Wheeler famously said, that
”spacetime tells matter how to move and matter tells space-
time how to curve.” Of course, the effects of a gravitational
field cannot be completely dismissed for objects that aren’t
infinitesimally small. This is accounted for using tidal forces,
which measures the stress/strain an object experiences while
in a gravitational field. [6]

Because spacetime’s geometry is dependent on the distri-
bution of mass, accelerating objects will produce perturba-
tions in spacetime that ripple outwards, known as gravitational
waves. Anything with mass can produce gravitational waves,
however most these waves are undetectable due to the large
distances traveled or size of the source. Thus, we rely on
detections from extremely massive, rapidly accelerating ob-
jects for gravitational wave analysis, such as neutron stars and
black holes. Objects like lone neutron stars (i.e. non-binary
with a constant spin) produce continuous gravitational waves
caused by irregularities in their shape and, as the name sug-
gests, these gravitational waves have frequencies and ampli-
tudes that change very slowly with time.

Currently, continuous gravitational waves have not been
detected, meaning LIGO’s database contains only transitory
gravitational wave events emitted from compact binary coa-
lescence (CBC). There are many massive, extremely dense
and rapidly accelerating bodies like neutron stars and black
holes orbiting each other, known as binaries. Over time, these
systems lose energy through gravitational radiation, which
causes their orbital distance to shrink and their acceleration to
increase. This initial phase is known as the inspiral phase of
CBC and has relatively stable readings by the detectors. Even-
tually, the orbital frequency gets large enough to noticeably af-
fect the readings of the emitted gravitational wave, showing a
gradual increase in amplitude and GW frequency. When these
massive objects join, there’s an extreme surge in energy and
the gravitational wave strain peaks, called the merger stage.
After merging, the joint bodies move to the ringdown stage,
which is defined as the event’s end as the amplitude returns
to zero. This three-step process is called compact binary co-
alescence, where compact describes extremely high-density
objects. To better describe the specific system, these events
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are divided into three subclasses: binary neutron star (BNS),
binary black hole (BBH), and neutron star-black hole binary
(NSBH) mergers. Gravitational waves produced by these bi-
nary systems will be the focus candidates of the project. We
can use the frequency f and its time derivative ḟ obtained
from the the Fourier transform of the strain amplitude to de-
rive their source parameters, such as chirp mass Mc (mea-
sured in solar masses) where m1 and m2 are the masses of
each object in the binary and

Mc =
(m1m2)

3/5

(m1 +m2)1/5
=

c3

G

[
5

96
π−8/3f−11/3ḟ

]3/5
. (2)

In the case of GW150914, obtaining the chirp mass was es-
sential in classifying the binary. Because M ≈ 30M⊙, this
meant mnet = m1 + m2 ≥ 70M⊙. Only a binary black
hole system could have the combined mass and orbital fre-
quency capable of this, as a BNS wouldn’t have the necessary
mass while and NSBH system would have a much smaller or-
bital frequency. This event had an orbital frequency of 75 Hz,
which is always defined as exactly half the gravitational wave
frequency[2].

As mentioned, when gravitational waves propagate, they
stretch and squeeze spacetime orthogonally. This results in
two different types of polarizations: plus polarization, h+,
when the perturbations occur vertically/horizontally and cross
polarization, h×, when they occur diagonally. We use this
information in determining how the GW affects the geome-
try of spacetime and in deriving information about the source
event’s parameters. The two different polarizations are shown
in figure 2.

Figure 1. Diagram of h+ and h×

What is Gravitational Lensing?

Now that we’ve realized spacetime’s non-Euclidean geom-
etry, we can better understand the behavior of light in the pres-
ence of a gravitational field. Fermat’s principle states that light
always travels the path requiring the shortest amount of time,
however that path is now a curve (called a geodesic) rather
than a straight line. When light traveling through space en-
counters a gravitational field, it bends to follow the curvature
of the field’s geodesic. This effect is known as gravitational
lensing and, while there are similarities to traditional lenses,
this lens results from spacetime’s interaction with a massive

body rather than the wave’s interaction with a medium. Gen-
eral relativity states that anything with no inertial mass must
travel at the speed of light, meaning gravitational waves be-
have similarly to light when passing through a gravitational
field and thus experience the effects of lensing. In fact, the
only difference in behavior is that gravitational waves are not
altered by any medium whereas light encounters the interstel-
lar medium as it travels to us. There are three classifications
of gravitational lensing, which are described below in the con-
text of light and gravitational waves.

Microlensing is the first type of lensing, which accounts for
the lensing effects of less massive celestial objects, such as
stars. When stars pass in front of each other, light from the
background source is temporarily brighter. When this occurs,
a single image is produced with very slight deviations from the
original waveform. This concept is not limited to interactions
between stars, as microlensing of light also helps us detect
exoplanets by measuring the source star’s change in bright-
ness as an orbiting planet aligns with it and the observer. Mi-
crolensing occurs similarly in gravitational waves, although
the effects are not directly detectable as the alteration in wave-
form is so small. LIGO considers microlensing in the context
of unresolved gravitational waves in the data, which are col-
lectively accounted for and termed stochastic background sig-
nal. This background can only be statistically analyzed, as
the behavior of microlensing events in a population of smaller
lenses such as stars contribute to this phenomenon. Some of
these gravitational waves likely originate from the Big Bang,
making this a noteworthy field of study as it could help us
better understand the primordial universe.

Weak lensing occurs when the lens object is massive
enough to deflect incoming light but doesn’t have sufficient
parameters to produce multiple images. Instead, the source
image will appear distorted. For light, this results in a signif-
icantly brighter image. For gravitational waves, this results in
a single, potentially detectable waveform that has a different
SNR than the unlensed waveform. When LIGO detects con-
tinuous gravitational waves, we will be able to analyze this
change in waveform directly using the unlensed signal. How-
ever, as we currently detect only CBC event, we again rely on
statistical analysis to determine if weak lensing has occurred.

Strong lensing occurs when the lensing body is extremely
dense and massive and thus produces two or more images
of the source. These images are identical apart from their
measured intensity caused by the path difference. When the
source, lens and observer are perfectly aligned, this results
in the phenomenon of Einstein rings and crosses, which oc-
cur for spherical and elliptical lensing objects respectively.
In the context of gravitational waves, we expect two distinct
gravitational wave events from CBC. Due to the path differ-
ence, these events will have identical waveforms apart from
a change in amplitude, measured using a magnification factor
derived from the SNRs, a time delay between the events and
a morse phase factor that determines the overall phase shift in
each lensed waveform. A shorter path corresponds an earlier
arrival time and larger SNR, meaning the waveform’s strain
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amplitude appears magnified. Depending on the orientation
of the source, lens and observer, lensed events can both be
magnified with respect to the unlensed source event, both be
demagnified, or be a combination.

Figure 2. Strong lensing for a star forming galaxy

By assuming geometric optics, we’re able to define the ab-
solute time delay, change in SNR, or magnification, and morse
phase ∆ϕ for a pair of lensed signals with respect to the un-
lensed source event according to lens model. The morse phase
describes the phase shift between the lensed and unlensed
waveform, which is determined using the image type found
from the solutions to the Fermat potential. Type I images are
characterized by a phase shift of 0, type II a phase shift of −π

2 ,
and type III a phase shift of −π. Together these describe any
lensed counterpart with respect to the unlensed waveform as

hlensed(f, θ̄, µ,∆t,∆ϕ) =
√
µ×horiginal(f, θ̄,∆t)×exp(isign(f)∆ϕ).

(3)
Given we have no way of analyzing an unlensed gravitational
wave event for CBC, we instead determine the relative time
delay and magnification factor between the two lensed events.
Relative magnification is defined as the ratio of the lensed
events SNRs ρ, or

µ =
ρtrigger

ρtarget
, (4)

and the relative time delay is defined as

∆t = ttrigger − ttarget. (5)

What is a Lens Model?

The point-mass lens model is simplest way of analyzing
gravitational lensing, which makes the assumption that the
lens is simply a point mass. In this model, shown in figure
4, the wave travels along a straight line until it is bent by the
lens, which causes an image to appear at a deflection angle, α̂,

from the source. When c is set to unity, this angle is calculated
as

α̂ =
4GM

ξ
, (6)

where G is the gravitational constant 6.67×10−11 Nm2

kg2 and ξ
is the impact parameter, which is the closest approach of light
for a given lens, and M is the mass of the lensing body.

By examining the equation, we see that α̂ ∝ M
ξ , meaning it

depends only on the mass of the lens and the source’s distance
from the lens, measured orthogonal to the optical axis. Thus,
the lensing effect becomes more pronounced as the deflection
angle α̂ increases[7].

Figure 3. Point Mass Lens Model

If the source, lens and observer are perfectly aligned along
the optical axis, infinitely many images form and are distorted
into arcs that appear as a ring of light around the lens. The
angular radius of an Einstein ring is given by the following
equation:

θE =

√
4GM

dLS

dOLdOS
(7)

When we assume small angles, sin(θ) ≈ θ and ξ = θdOL.
Furthermore, we see that the image is at height θdOS , which
is equivalent to βdOS + α̂dLS . If we use to this to solve for θ,
we see

θ =
β ±

√
β2 + 4θ2E
2

(8)

There are two solutions to this equation, meaning we see mul-
tiple images. Because

√
β2 + 4θE > β, multiple images

form when β ̸= 0, one at an angle θ+ above the optical
axis and another at an angle θ− below it. When β = 0, this
equation breaks down into the equation for an Einstein ring’s
angular radius, in which there are an infinite number of im-
ages. If we solve the lens equation for the time-delay, there
are three different solutions depending on the type lensed sig-
nal, called Type I, II and III lensed signals. They represent the
minimum, saddle-point and maximum solutions, respectively.
Type II images are Hilbert transform of the unlensed wave-
form, while Type I and Type III images are scaled versions
of it. Type III images differ from Type I only by their sign.
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In the case of LIGO, Type II images are prime candidates for
detection given their similarity to the original waveform and
consequential high SNR. This is because we assume geomet-
ric optics, in which waveform distortion only occurs when the
image originates from a saddle-point solution[8].

However, the point-mass lens model fails in accounting for
the mass distribution of the lensing galaxy. To approximate
this better, we can instead employ the Singular Isothermal
Sphere (SIS) model. The Singular Isothermal Ellipsoid (SIE)
model is similar to the SIS model, although more realistic
given it allows for elliptical symmetry of the lensing galaxy.
Both of these models have singularities at their centers, mean-
ing they fail in modeling cases of lensing where the light has
the closest approach the lensing galaxy, which corresponds
to type III images. In these cases, the Non-singular Isother-
mal Sphere or Ellipsoid (NSIS or NSIE) models are more ap-
propriate. For even more massive lenses such as galaxy or
dark matter clusters, models such as the Navarro-Frenk-White
model work best. However, these are just a few of the many
possible gravitational lensing models.

Identifying Triggers

When searching for transient gravitational waves, we must
account for the various sources of noise that contribute to our
measurements. Thus, the output data from the detectors, d(t),
is a combination of both noise, n(t), and gravitational wave
signal, h(t), such that

d(t) = n(t) + h(t). (9)

There are various types of noise affecting our data, includ-
ing environmental noise (earthquakes, human activity, etc.)
and thermal noise (the non-zero temperature of the interfer-
ometer). Because noise is a random process, we make the
assumption that it is Gaussian and stationary to better approx-
imate the power output for a given bandwidth of signal. We
obtain the energy of a time-function by integrating over the
square of the function’s magnitude, which we can relate back
to the frequency space using Parseval’s theorem. This shows
that the total energy in the time domain is equivalent to the
total energy in the frequency domain, meaning both of these
expressions are proportional to the power at a given point.

Because potential gravitational wave signals get buried un-
derneath noise due to the incredibly small amplitude, we use
various search pipelines to search for signal, all employing
different methods of upranking signal. These measure the data
using the signal-to-noise ratio (SNR), which describes the am-
plitude of the waveform or contributed arm strain. The opti-
mal ρ is inversely proportional to the effective distance Deff

and, at detector’s current sensitivity, events with an ρ > 4 are
registered as a trigger.

Before we can run the data through a search pipeline, we
must whiten it so the variance in amplitude is 1. If the am-
plitude of the data is higher than the variance (to a degree

chosen by us), the pipeline disregards measurements in the
±0.25s range, basically setting that interval’s amplitude to 0.
This process is called gating, and it’s important we choose this
degree so we minimize noise error specifically from glitches
while not overlooking any potential GWs. We then perform
the single-value-decomposition (SVD) to reduce the wave-
form templates into a set of basic vectors. After this, we
decompose the template bank so only the necessary wave-
forms are kept, which reduces the computational time. To
do this, we use each template’s parameters to determine their
time-frequency evolution, then split the template bank into
partially-overlapping split-banks according to this. We then
clip any overlapping regions so only distinct waveform tem-
plates remain, and again whiten the data. We also divide the
split-banks into time-slices and set each template to have the
same number of sample points. This is because lower fre-
quencies have more templates and are likewise susceptible to
oversampling. Finally, SVD is again performed, now return-
ing the most important basis waveform.

The gstLAL search pipeline works by calculating the Bayes
factor, or the likelihood ratio of the signal’s template wave-
form parameters being astrophysical versus them being noise.
This is defined as

L =
L(O⃗, D⃗H , ρ⃗, ξ⃗2, [∆t⃗coinc,∆ϕ⃗coinc]|signal)

L(O⃗, D⃗H , ρ⃗, ξ⃗2, [∆t⃗coinc,∆ϕ⃗coinc]|noise)
×P(⃗θ|signal)

P(⃗θ|noise)
.

(10)
This is described by the template parameters are the participat-
ing detectors O⃗ , the maximum horizon distances for each de-
tector (or their sensitivity) D⃗H , their matched-filter signal-to-
noise ratio ρ⃗, their auto-correlation based signal consistency
test values ξ⃗2, and the time and phase delay between coin-
cident events ∆tcoinc and ∆ϕ⃗coinc. The ratio of P(θ⃗|signal)
and P(θ⃗|noise) represents how likely the template parameters
are to model the trigger given it’s GW signal or noise. We
can calculate the False-Alarm-Rate to determine the event’s
significance, which gives a measure of how often noise can
mimic the given waveform. The gstLAL then ranks candidate
events according to this. A smaller FAR means a lower likeli-
hood of the candidate being produced by noise, thus increas-
ing the likelihood of it being a real gravitational wave signal.
Candidates are selected for further analysis if they go above
a threshold decided by the analyst. This gives us a ranked
list of possible candidates as well as the source parameters of
the templates that identified them. However, source param-
eters can differ widely from the template parameters, so this
list only serves in identifying candidates worthy of follow up
analysis, not as a method of determining the actual source pa-
rameters. [9].

One method of determining statistical significance is the co-
incidence criterion. Because there are multiple detectors with
fixed locations, we can determine the time-frame in which
the detectors should register the same gravitational wave sig-
nal. For example, because the LIGO Hanford and LIGO Liv-
ingston detectors are 0.01 light-seconds apart, their respec-
tive triggers for the same event should also occur within this
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general time-frame. However, because that time interval is
specific to light, we increase the coincident time interval by
a small amount to account for uncertainties in the GW’s be-
havior. The gstLAL also enforces coincident triggers to have
the same parameters, and together this information is used
in determining the event’s statistical significance. Now non-
coincident triggers are marked as noise, which helps us bet-
ter understand the probability density of each detector’s noise
background.

Searching for Lensed Pairs

Although this method is sufficient in detecting gravitational
waves, it may fail in detecting sub-threshold lensed counter-
parts because they have low ranking statistics and are more
easily buried in the noise background. However we can
remedy this using the gstLAL-based TargetEd Sub-Threshold
Lensing SeArch pipeline (TESLA). With TESLA, we take
the known information about the super-threshold candidate
and reduce the template bank so only templates with reason-
able source parameters remain. Because the source param-
eter estimation of the super-threshold GW gives us a prob-
ability distribution rather than a fixed value, we also obtain
the proper parameter estimation for the sub-threshold event
using the Bayesian posterior probability distribution. This
helps in reducing background noise while keeping the rele-
vant template waveforms. If the noise is Gaussian and sta-
tionary, keeping only the space enclosed by the 90% credible
region is sufficient in covering the sub-threshold counterparts.
Yet most noise is non-Gaussian and a leading cause of false
alarms, so this region is insufficient in searching for the tar-
geted GW. Thus, research aims at decreasing the amount of
templates picking up unwanted background noise while keep-
ing the templates necessary in picking up the desired fore-
ground information, i.e. the most probable template parame-
ters.

This leaves us to decide what regions of the parameter space
should be targeted, which is done by injecting samples of the
sub-threshold signal and keeping only the templates that re-
cover them using the gstLAL. To register as a trigger, it still
requires an ρ > 4 so we tweak one of the original parame-
ters to simulate lensed signal. Because the source’s effective
distance Deff is inversely proportional to the SNR, we can
demagnify the confirmed waveform SNRs by increasing the
measured effective distance. During an injection period, there
is one injection with the original SNR and 9 weaker injections
to describe the SNRs at the increased effective distances. The
weaker injections are determined so the weakest injection reg-
isters an ρ ≥ 4 in all detectors. We then inject the signals into
our data and run them through the gstLAL with a full template
bank, keeping templates capable of recovering the injections
and adding them to the reduced template bank. The results
are then analyzed so templates that significantly deviate from
our original source parameter’s posterior space are discarded.
We then use this reduced template bank to search for potential

sub-threshold lensed counterparts within all possible data. Af-
ter this, we create a priority ranking list using the FAR ranking
statistics from the confirmed gravitational wave. As with tra-
ditional analysis, this gives the likelihood of the signal being
astrophysical, not of it being a lensed counterpart. Overall, the
TESLA method maximizes the efficiency of the search by pro-
ducing a nearly optimal template bank and reduces the noise
background by accounting for glitches. This process is again
described in figure 5 below [9].

Figure 4. TESLA flowchart for a given target event

A test performed on the two LIGO detectors and the
VIRGO detector using data from GW220112a showed that
the TESLA template bank is the most effective in searching
for sub-threshold counterparts. When compared to a single
template bank containing the posterior samples from the target
event with maximum probability, a PE template bank contain-
ing templates in the posterior probability distribution’s 90%
credible region and a template bank selected at random, the
TESLA bank found +9.26% more injections than the general
search. In comparison, the single, PE and random template
bank missed more injections than the general search, having
found percent changes of −40.0%, −80.3% and −77.5% re-
spectively. Because the PE template bank only considers noise
for the super-threshold event, it’s more likely to miss the sub-
threshold event due to the time delay. The TESLA template
bank takes into account the signal sub-space of the confirmed
event and glitches, making it more likely to recover the lensed
counterparts[9].
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METHODOLOGY AND RESULTS

The overall objective of this project was incorporating the
relative time delay and magnification distributions predicted
by lens models into ranking possible sub-threshold, strongly-
lensed candidates. This provides us with a lensed likelihood
based on the type of lens model used and super-threshold
event in question. We use this with the parameters’ likeli-
hood for the case of no lensing to determine the Bayes factor,
which can then be used in statistical analysis for gravitational
lensing with real data. This is incorporated as post-processing
script in the gstLAL-based TESLA search pipeline.

The gstLAL search pipeline uses Bayesian hypothesis test-
ing to determine if the signals are either astrophysical or noise.
The proportional form of Bayes theorem is given as

P(hypothesis|data) ∝ L(data|hypothesis)× p(hypothesis)
(11)

We search for the posterior, which represents how likely the
hypothesis is given the data. L(data|hypothesis) is the like-
lihood of seeing the data given the hypothesis, p(hypothesis)
is the prior, or our initial belief. When find the equivalent
form, the right hand side is divided by the evidence about data,
E(data). Unless working on model selection, the evidence is
used only as a normalization constant and set equal to the in-
tegral of the numerator from −∞ to ∞. This means the area
under the curve of the probability distribution function always
equals 1. However, given that we’re calculating the ratio of
the likelihoods, we may ignore the evidence because the it’s
the same for both hypotheses.

When comparing two hypotheses, we can take the ratio of
the proportional form of their posteriors if using the same data,
or when the two evidence terms are equal. This allows us
to measure how strongly one hypothesis explains the data in
comparison to another, given by the equation

P(hypothesis1|data)
P(hypothesis2|data)

=
L(data|hypothesis1)× p(hypothesis1)
L(data|hypothesis2)× p(hypothesis2)

.

(12)
In creating the post-processing script to search for lensed sig-
nals, we employed Bayesian hypothesis testing, comparing
the lensed versus unlensed hypotheses for a trigger. We de-
fine the posterior odds Olensed

unlensed as

Olensed
unlensed =

L(µ,∆t|lensed)
L(µ,∆t|unlensed)

× p(lensed)
p(unlensed)

. (13)

This new likelihood ratio, or Bayes factor, compares the like-
lihood of seeing the given parameters for two hypotheses and
is defined as

Llensed
unlensed =

L(∆t, µ|lensed)
L(∆t, µ|unlensed)

. (14)

This is value is a stronger measure of the results as prior odds
can often differ depending on one’s approach. As mentioned,
the time delay ∆t represents the difference between the geo-
center end times of the subthreshold and super-threshold

event, making it independent of the time delay experienced
by detectors. The magnification µ is defined as the ratio be-
tween the trigger and target event SNRs ρ. In this project,
we primarily worked on modeling the numerator of the like-
lihood ratio, or the likelihood that an event with parameters
µ and ∆t values is lensed. To do this, we employed Gaus-
sian kernel density estimation (KDE). The script incorporates
user-provided sample points containing values for the relative
time delay and magnification values according to a given lens
model and then performs KDE over the two-dimensional data
set to build unique probability density functions according to
input. The figure below shows the bivariate probability den-
sity function for sample data obtained from an SIE lens model
when considering a pair of type I and type II images.

If we isolate each parameter’s probability density function,
they appear as follows.

We see that the most likely value for magnification is some-
where around 1, while the most likely time delay value is very
small, lying somewhere near 0. The models serve in assign-
ing probability density values for parameters when consider-
ing real data.

When incorporating the denominator into the likelihood
calculation, we considered the each probability density func-
tion individually as they’re independent for both lensing and
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no lensing. The likelihood of seeing a given time delay pro-
vided the signal is not lensed has been previously calculated
as

L(∆t|not lensed) =
2

T
(1− ∆t

T
), (15)

where T describes the livetime of the detectors, or how long
they have been operating for the given observing run, and ∆t
represents the time delay between two randomly selected, un-
lensed events[10]. To calculate the likelihood of the magni-
fication for the unlensed hypothesis, we used rejection sam-
pling with red-shift as a model to obtain

P(µ|not lensed) =
(
daL
dbL

)2

. (16)

In this, we used the relationship between red-shift and lumi-
nosity distance, and luminosity distance and SNR to deter-
mine the magnification probability density using pairs of ran-
domly selected, unlensed events.

While the prior odds is not currently used in the script, it
can be understood as the expected rate of strong lensing within
LIGO’s observational range. For the case of lensing, we have
an informed prior, meaning it is dependent on the true source
red-shift. As this value increases, so does the expected rate
of lensing. However, this value is extremely small, and can
be approximated as somewhere between 10−3 to 10−4 events
per year[11].

When running the lensing search script, we get the tradi-
tional rankings for astrophysical signal determined during the
gstLAL/TESLA search in addition to new data describing the
lensing likelihood ratio. This is determined for three different
models: type I and type II pairs, type I and type I pairs, and
type II and type II pairs. We also include a marginalized like-
lihood which averages over these three models. We see this
graphically as an inverse event count, shown for type II pairs
in the figure below.

CONCLUSIONS AND OUTLOOK

To fully access the success of this search, we must inject
data containing the lensing parameters for unlensed wave-
forms. This will gives us a threshold for determining the
significance of the lensing likelihood ratio when searching
for lensed events in real data. Currently, the gstLAL returns
closed and open box methods of analyzing the likelihood for
noise and signal. For the latter, the event count shows a devi-
ation from the expected noise curve when a signal is present.
Our goal is to create a similar representation for the event
count of potential lensed signals, where unlensed signal is
used as a model curve instead of noise.
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Li Ka Yue Alvin
With more gravitational waves to be detected in LVK’s upcoming observing run, we have increasing chances of making the first detection of strongly lensed gravitational waves. Hence, it is crucial to boost the search sensitivity of existing search pipelines for strongly lensed gravitational wave, superthreshold or subthreshold, as much as possible. In this research, we investigated and implemented a lensing likelihood term to triggers found from TESLA, a targeted sub-threshold search pipeline for strongly lensed gravitational waves. The lensing likelihood evaluates the ratio of probabilities of obtaining a relative time delay and magnification compared to a target super-threshold gravitational wave for each trigger, under the lensed and unlensed hypothesis respectively. The goal of evaluating this likelihood is to provide an initial priority ranking for candidates coming from the TESLA pipeline for lensing follow-up analysis. To fully access the success of this search, we must inject data containing the lensing parameters for unlensed wave- forms. This will gives us a threshold for determining the significance of the lensing likelihood ratio when searching for lensed events in real data. Currently, the gstLAL returns closed and open box methods of analyzing the likelihood for noise and signal. For the latter, the event count shows a devi- ation from the expected noise curve when a signal is present. Our goal is to create a similar representation for the event count of potential lensed signals, where unlensed signal is used as a model curve instead of noise.
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