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Terrestrial interferometers



Why are terrestrial detectors 
limited to f > ~1 Hz?
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• Passing GW shortens the light path for one 
arm, lengthens for the other – and then vice-
versa          
    ΔL = hGW · L

• Interference at the Beam splitter turns this 
into a light intensity variation, and a 
photodiode into an electrical signal

• Resolution of the readout limited by 
quantum effects

• Physical motion of the mirrors due to local 
forces masks the minuscule changes in light 
path due to GWs



Newtonian background due to 
seismic environment

• In principle, can eliminate all direct mechanical coupling 
• Can not shield against the wandering net gravity vector
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Newtonian background 
creates a wall 

at a few Hz
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• Newtonian Background falls as ~ 1/f 5

• Can reduce somewhat by moving underground
– ET vs CE – more later on these two

• Can reduce somewhat with arrays of 
seismometers and subtraction of effect

• Forbiddingly large for ~3Hz and lower
• Ultimate limit on the lowest frequency 

detectors on- or  under-ground
• And thus the largest BH masses detectable
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Practical limitations for Terrestrial Detectors
• Arm length L – currently in short-antenna limit; path-length shift ΔL from a 

given strain grows with interferometer arm length. Maximize L ! 
– ΔL = hGW · L
– LIGO 4km,  Virgo and KAGRA 3km

• Optical resolution – limited by photon 
Poisson counting statistics; maximize laser power P

• …but too much power, and the radiation pressure 
causes mirror motion which masks the GW

• Optimal power – naïve quantum limit
– Working with ~50-100 W
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Many other technical noise sources…

8Sensitivity and performance of the Advanced LIGO detectors in the third observing run 
A. Buikema et al. Phys. Rev. D 102, 062003
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Newtonian,
Suspension thermal,

 Seismic, 
Scattered light,

Radiation pressure,
Servo controls
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Good enough to start the new observational 
discipline of Gravitational Wave Astronomy

• What have we seen so far?
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The ground-based 
gravitational-wave world-wide network in 2023

A third LIGO detector in 
India funded 

(Operational late 2020s)



Gravitational Wave Physics & Astrophysics
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Observations

Image : Carl Knox (OzGrav, Swinburne University of Technology)
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Slide: S. Fairhurst



Image : Carl Knox (OzGrav, Swinburne University of Technology) Slide: S. Fairhurst

GW150914: First Detection

GW150914

Abbott et al, “Observation of Gravitational Waves from 
a Binary Black Hole Merger”, 2016 16



Image : Carl Knox (OzGrav, Swinburne University of Technology)

GW170817: Neutron Stars and 
Multi-messenger Observation

From Abbott et al, “Multi-Messenger Observations of 
a Binary Neutron Star Merger ”, 2017
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GW190412: Unequal mass binary

One of the black holes ~4 times heavier than the other
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Slide: S. Fairhurst



GW200105 and GW200115: 
Observation of Neutron Star
Black Hole Mergers

First unambiguous observation 
of NS-BH system
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Slide: S. Fairhurst



Observations

Image : Carl Knox (OzGrav, Swinburne University of Technology)
20

Slide: S. Fairhurst

GW190521: A Black Hole in the 
Pair Instability Mass Gap

Evidence for a hierarchical merger?
Or perhaps dynamical capture? 

156 Msun

66 Msun

95 Msun



Measuring the Hubble Constant Using 
Gravitational-wave ‘Standard Sirens’

21

B. P. Abbott, et al., “A gravitational-
wave standard siren measurement of 
the Hubble constant”, Nature 551, 85-
88 (2017).

𝒗𝑯𝒖𝒃𝒃𝒍𝒆	(≈	𝒄𝒛) = 𝑯𝟎𝑳𝑫(+𝒗𝒑)

B. F. Schutz, “Determining the Hubble 
Constant from Gravitational Wave 
Observations”, Nature
323, 310–311 (1986).

https://www.nature.com/articles/nature24471
https://www.nature.com/articles/nature24471
https://www.nature.com/articles/323310a0
https://www.nature.com/articles/323310a0


LIGO-G2102497

• O1: Gravitational waves from astrophysical sources can be measured. 
• O1: Binary black hole (BBH) systems exist.
• O2: Binary neutron stars (BNS) are progenitors of short gamma ray bursts.
• O2: BNS mergers produce kilonovae, which produce heavy elements.
• O2: The speed of gravitational waves equals the speed of light.
• O2: The Hubble-Lemaître constant can be measured using EM-bright GW ‘sirens’.
• O2 – O3: The Hubble-Lemaître constant can be measured using dark GW ‘sirens’.
• O3: Black holes with masses in the (pulsational) pair instability gap exist.
• O3: Black hole – neutron star systems exist.
• O3: Compact objects exist in the 2 – 3 M⦿ mass range.
• O1-O3: Astrophysical black holes are Kerr black holes
• O1 – O3: General relativity is valid in the high curvature, high field regime.
• O1 – O3: Intermediate black holes and stellar mass black holes with mass > 20 M⦿ exist.

22

LIGO-Virgo Fundamental Results 2015-2021: What Ground-
Based Gravitational Wave Detections Have Taught Us

GW150914

GW170817/
GRB170817A
SSS17A



Current Ground-based GW Detector ‘Reach’

Credit: Nasa Cosmic Explorer Horizon Study
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https://arxiv.org/abs/2109.09882


Sensitivity improvements boost signal rate

24

• rreach  ∝ 1/hsensitivity 
• Volume of space accessible – 

and sources –grows as ~(sensitivity)3

• There are gaps for the upgrades… but 
so far we make up for it

h =
2G

c4 r
Ï
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O4 started 24 May 2023
• Significant delay from original planning – COVID primary cause
• Starting without Virgo due to technical problems; hope to join in Fall ‘23
• KAGRA still commissioning, with plans to join late in the run
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O4 started 24 May 2023
• Many event triggers sent out, range of likely binary systems represented
• No EM/particle coincidences to date (and very poor localization…)
• Eagerly awaiting Virgo!
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Notional Plans for 
the current 4km 
observatories – 

2x improvements

• Best guess for LIGO
• Virgo similar
• Gives improving 

performance and 
continuous 
operation to ~2040
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~160 Mpc
~275 Mpc

~600 Mpc



What could we do with 10x better GW detectors?

• Greater sensitivity will enable a 
qualitative growth in the number of 
observed sources 
(10x sensitivity à 
             few 105 sources per year)

• It also increases the resolution of 
waveforms, enabling more stringent 
tests of GR and more detailed 
models of the coalescences

• Wider bandwidth can expose 
Neutron star coalescence and thus 
dynamics of dense matter



Black Holes and Neutron Stars throughout cosmic time
• The best understood source of 

gravitational wave emissions are 
compact binary systems.

• Can build a detector able see all 
binaries in a broad range of masses



Even better detectors would deliver more science.
How to build a such a  10x better detector?

Make it 10x longer à 10x larger signal

ΔL = hGW · L
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Noise due to stochastic forces is 
independent of armlength

• The Newtonian Background is the same for 4 or 40km, but the 
signal is 10x larger

• Also unchanged:
– Thermal noise motion (pendulum, substrate, coating)
– Magnetic and electrostatic dynamic forces

• …Up to L = 1/2 λGW – giving an optimal length for a given signal

ΔL = h L
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Sensing noises scale with arm length
at various powers of 1/L – all get better
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Shot Noise
while maintaining bandwidth

Radiation Pressure Noise
 while maintaining bandwidth

Coating Thermal Noise
loss angle dependence

Residual Gas Noise
facility limit



The Infrastructure for a 
realistic implementation

• A sufficient length  L of the arms is needed to bring the 
GW-induced strain to a measurable level (4km à 40km)

• Sensing laser light must travel in an excellent vacuum (10-9 Torr)
• The vacuum system diameter must accommodate a diffraction limited 

beam over 4 or 40km (~1 m Diameter)
• The vacuum system must be straight, level, and protected from the human 

and natural environment (earthmoving, concrete bed, 
aligned to several mm over 4 or 40km, and protected by a concrete cover)

• Corner and end buildings with particulate, temperature control; 
staff buildings; outreach/public science building (~10,000 m2)

34



LIGO Hanford 
Observatory

35

Present LIGO Observatory sites
L = 4km

LIGO Livingston 
Observatory
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Image: Eddie Anaya  (Cal State Fullerton)
Image: Eddie Anaya  (Cal State Fullerton)

Image: Eddie Anaya  (Cal State Fullerton)
Image: Eddie Anaya  (Cal State Fullerton)

Image: Eddie Anaya  (Cal State Fullerton)

cosmicexplorer.org

cosmicexplorer.org

• US contribution to the next-gen Network (with Einstein Telescope – European project)
• LIGO-like concept for a single interferometer per site, on Earth’s surface
• CE is a larger, and more technically advanced version of LIGO: 

baseline of two widely separated observatories,  40km and 20km arms

http://www.cosmicexplorer.org/


CE Detector Design
• LIGO is starting to plan upgrades to the LIGO 4km detectors for the ‘Post-

O5’ epoch – ~2029 to the start of CE observing (optimistically 2035)
• Room temperature, 1 micron light, fused silica optics, sputtered optical 

coatings, frequency dependent squeezed light..
• Initial CE detectors will usetechniques of this LIGO Post-O5 upgrade
• Low risk – no significant advances in the detector are needed
• Some work on bigger masses, suspensions, lower-loss optics

• (Later CE upgrades can include all insights from CE, ET, quantum sensing…)
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CE Infrastructure
• Baseline of 40km and 20km observatories
• 20km = 1/2 λGW is ideal for observing ~2kHz endgame of 

neutron-star mergers
• 40km is optimized for absolute ‘reach’ to enable all in-scope binaries to be observed

• Sites separated by a continental baseline for position information
• Hope that ET in Europe will be built; expect that data will be shared

• Working on less expensive vacuum systems (dominates the cost)
• Single interferometric detector per site
• Earth’s surface construction
• Bad: increased coupling to surface ‘seismic’ noise, and thus Newtonian background 

– limits low-frequency sensitivity (~7Hz compared to ~5 Hz for ET)
• Good: less expensive than tunneling; no complexity of underground work; future 

modifications of interferometer layout easier (no new caverns)
• Geographically suitable sites can be found in the US (and Canada, Australia…)

38



• The history of the land will play a pivotal role in this project. 
• We have the opportunity, and obligation, to work with Indigenous Peoples
• We will build synergistic relationships and respect their land, their culture, 

and their sovereignty.

http://native-land.ca/

If you are not aware of issues surrounding TMT, please read arXiv:2001.00970 .

https://arxiv.org/pdf/2001.00970.pdf


CE Status

• Conceptual Design is now underway
• CE Funding approved for this phase
• International contributions (in-kind) – UK, Canada, Australia, Germany

• Goal: observatories by mid-2030’s

40



European Vision for the next generation: 
Einstein Telescope

• ET Design: underground, triangular, 3 detectors consisting 
of two interferometers each 
(high frequency + low frequency ‘xylophone’)
– Cryogenic test masses, longer wavelengths for LF operation
– Underground infrastructure designed for future upgrades 

• Possible sites:
– Euregio Meuse-Rhine
– Sardinia, Italy
– (possibly) Saxony, Germany

• Current envisioned timeframe: 
– Construction to begin in 2026
– Science operations to begin in 2035

• Status:
– ET is a fully recognized European Project on European Strategy Forum for 

Research Infrastructures (ESFRI) Roadmap à a key step in getting the project 
funding lined up. 

– ET Project Organization and relevant Boards have been established
– ET Pathfinder facility in Maastricht, Netherlands under construction
– Site evaluation well underway 41



Reach of present and future instruments

Credit: 
ESO/NAOJ

Cosmic Explorer
and

Einstein Telescope

LIGO
~2033

LIGO
today

42
Slide: Kevin Kuns



The last page (at last!)
• Ground-based GW observation works, and LIGO, Virgo, and KAGRA observing together
• There are lots of sources yet to be observed
• Scaling laws show the technical feasibility of better detectors
• The US Concept, Cosmic Explorer

– Two sites, one 40km, one 20km
– Surface construction, LIGO Technology

• The European Concept, Einstein Telescope
– Underground triangle multiple-interferometer approach
– Pushes detector technology with high power, low temperatures

• Both eager to participate in Multi-Messenger Astrophysics

The future is bright for gravitational-wave astronomy!
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Thank you!
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Gravitational Wave Properties
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GW generation: 
lowest order radiation is quadrupole
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Gravitational Wave Properties
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Amplitude of the gravitational wave strain is h = ΔL/L
ΔL = h L

Big L makes ΔL easier to measure; current detectors 
have L = 4 km, so from our two-mass example  

ΔL ~10-21 x ~103 = ~ 10-18 m

L

Stretching and squeezing of space-time

ΔL
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The binary neutron star signal, with and without 
the interferometer noise
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40km CE
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Why 40km?

• Broadly speaking, the sensitivity of these instruments improves with length
• The bandwidth is, however, limited to roughly

𝑐
2𝐿

=
3×10! 𝑘𝑚𝑠
2	×40	𝑘𝑚

≃ 4	𝑘𝐻𝑧

so making a detector longer than 40km would compromise its access to 
interesting astrophysics (i.e., post-merger signals and supernovae).

April 2022 M. Evans 51



What can CE do?

arXiv 1902.09485

M. Evans 52
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Noise improvements: reducing quantum noise

• Increasing the laser power in the arms
O1,O2 (100kW) à O3 (200kW) à goal is 400 kW for O4

• Not easy!

53

- You need a high power laser first..
- Mirror radii must remain within a few 

meters of the ~2 kilometer nominal value
- Control issues: angular control and 

parametric instabilities
- ``Point absorbers”

Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)
Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)

Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)
Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)

Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)

Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)
Applied Optics Vol. 60, Issue 13 pp. 4047-4063 (2021)

• Complementary approach: 
squeezed states of vacuum 

https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13
https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13
https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13
https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13
https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13
https://www.osapublishing.org/ao/issue.cfm?volume=60&issue=13


LASER

Phase

IFO Signal

Amplitude

² When average amplitude is zero, the variance 
remains

² Heisenberg uncertainty principle, quadratures 
associated with amplitude and phase

² They enter the interferometer from all the open ports 
of the interferometer, but the ones which matter are 
the one entering from the anti-symmetric port!

X1

X2

∆X1 ∆X2 ≥1

Zero-point energy
 (vacuum) fluctuations

54



Replace regular vacuum with squeezed vacuum

LASER

Squeezed Field

Phase

Amplitude

² Reduce quantum noise by injecting squeezed vacuum: 
less uncertainty in one of the two quadratures 
² Heisenberg uncertainty principle: if the noise gets 
smaller in one quadrature, it gets bigger in the other one
²   One can choose the relative orientation between the 
squeezed vacuum and the interferometer signal (squeeze 
angle)
²Squeezing is made by creating pairs of photons 
using an optical parametric oscillator 
²The pairs are quantum-mechanically entangled 
and have correlated arrival times at the detector
²This reduces the randomness of the time 
distribution

IFO Signal

55



Squeezing performance in O3

56

PhysRevLett.123.231107 Nature 583, pages 43–47 (2020)

6dB

3 dB of squeezing observed at high frequency  = 40% 
quantum noise reduction (in amplitude); observation 

of quantum radiation pressure noise in both 
detectors

GEO

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231107
https://www.nature.com/articles/s41586-020-2420-8
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Kimble et al., Phys. Rev. D 65(2) 022002 2001 57

Highlight from Virgo:                       
 300 m filter cavity already 

built and locked and characterized, 
commissioning in progress

Credit: Antonio Pasqualetti



Initial results for Frequency Dependent Squeezing 
LIGO Hanford
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The Cosmic Explorer Project 
Organization today
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