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L1 O3a Tomtes: test set residuals after glitch subtraction

T
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B Whitened Residuals

Glitschen
A data-driven model
for transient glitch
mitigation.
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Count Rate (0.3 - 10 keV)[/s]
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GRB Afterglows
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Search for Redshift Evolution
of the Mass Spectrum

Primary Mass Distribution
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Sangeet Paul

Classification of detected GW sources
using unsupervised ML algorithms.
Universality: works with any posterior
samples in any parameter space.
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Sangeet Paul R = 34.00%1398 Gpc—3yr~!

Hierarchical Mergers
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Model: BH Coagulation.
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Non-Parametric Populations Lo 5emeirie modeling of the merger rate'

100

evolution in mass, spin, and redshift.

GWTC-3: BBH Primary Mass Distribution
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BBH Subpopulation Semi-Parametric

Mixture Modeling

Split up the BBH population into
subpopulations described different mass
and spin distributions

ISOLATED PEAK MODEL and PEAK+CONTINUUM MODEL Mass Distributions
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See talk tomorrow!

ISOLATED PEAK MODEL Spin Magnitude Distributions
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Environmental noise measurement in aLIGO
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Measuring the GW background and GW candidate
vetting

Environmental injections to determine ambient coupling of environment
to GW signals, vetting GW event candidates with evidence of
environmental contamination (Schofield, Ball, Helmling-Cornell, Frey)
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See Adrian’s talk tomorrow morning!



Finding of high-frequency LHO-LLO magnetic
coherence

Most environmental noise is uncorrelated between sites. But global geophysical magnetism can
be coherent. At low-frequency (< 50 Hz): Schumann resonances. We now see high frequency
magnetic coherence between LIGO (and Virgo) sites, which we show is due to lightning. This can
be a difficult-to-reduce background for stochastic GW searches. (Ball, Schofield, Frey)

LLO-LHO coherence measured
by on-site LEMI
magnetometers as a fn of
frequency (blue).

After vetoing of (much of) the
time with lightning signals
(yellow, orange, green).

See talk by Matthew
Ball tomorrow morning
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senMannix” GWSs associated with Gamma-Ray Bursts

Event rate (counts/s)

Frequency (Hz)
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We use triggers from gamma-ray satellites to perform targeted GW
searches (Mannix - will be part of 04 paper writing teams)

GRBs originate from two sources that we could detect with gravitational
waves; neutron star (short GRBs) and collapsars (long GRBs)

Developing tools to analyze potential GW detection from collapsar GRB
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Blip Glitches and Cosmic Strings

Adrian Helmling-Cornell

Machine learning methods for distinguishing GWs from cosmic strings from glitches in the detector,
parameter estimation with injected GW CS signals, 04 burst search (Helmling-Cornell)
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Kara Merfeld
Magnetars and FRBS See talk by Matthew Ball

e Fast Radio Bursts are a mysterious cosmic phenomenon. And magnetars are highly
magnetized neutron stars which occasionally emit large x-ray bursts.

e April 28, 2020: galactic FRB (first!) associated with known magnetar SGR 1935+2154

e In 03, searching for GWs associated with FRBs and x-ray flares from galactic magentars

(Merfeld, LVK lead): upper limits on GW emission (LVK paper)
e Astrophysical inferences on magnetars based on GW data and f-mode modeling - talk by
Matthew BallhA knon magnetar 1935+215

Locations of known magnetars (J2000)
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