

# LIGO-Virgo-Kagra Status Report

GWANW 2023

Michael Ross – University of Washington

#### Network



Worldwide network of gravitational wave observatories

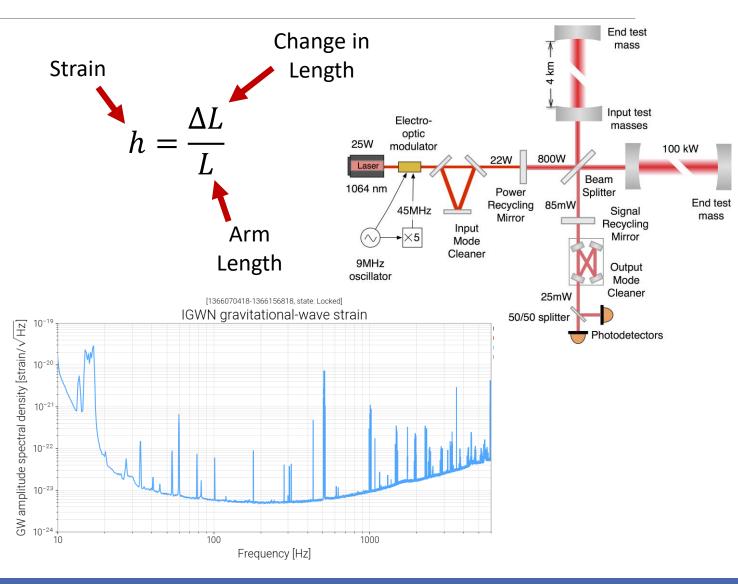
Multiple far-flung sites allows for better source localization and polarization studies

Collaboration spanning across five continents

Share knowledge and sync observing runs to maximize science

### Interferometers

Each observatory is a Fabry-Perot Michelson interferometer


Measures differential strain across the two arms of the interferometer

Lots of optics to maximize sensitivity

Sensitive to GWs between 30 Hz – 8 kHz

Low frequency limited by being on the Earth's surface

Primarily sensitive to stellar-mass binary black holes and binary neutron stars



### Observatories

#### LIGO (US):

- Pair of 4-km long interferometers
- Active seismic isolation + quadruple pendulum

Virgo

#### Virgo (Italy):

- 3-km long
- Passive isolation

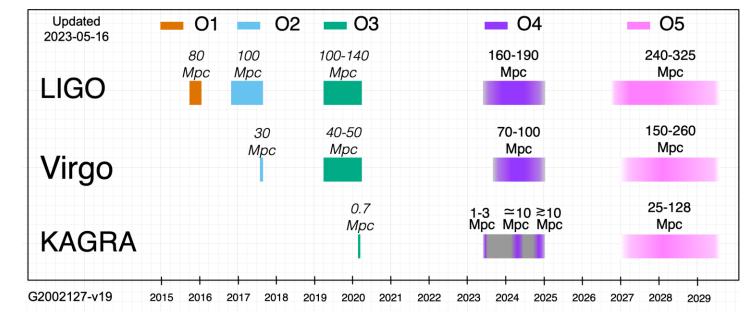
#### **KAGRA** (Japan):

- 3-km long
- Underground
- Cryogenic
- Passive isolation



KAGRA

### **Observing Schedule**


Alternating periods of observing and upgrades

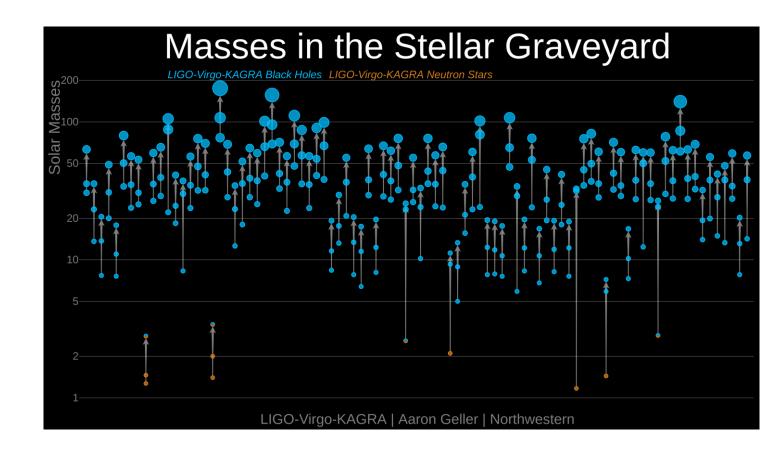
With each upgrade we have larger range, number of events goes like range cubed

Moving towards longer observing runs with each upgrade phase

Break between O3 and O4 was extended due to COVID

O4 started in May and will continue for a year and a half




### **Previous Results**

Observations have been rapidly increasing in the last 8 years

- $\circ~$  First GW detection in 2015
- First multimessenger (GW170817) in 2017
- 90 significant events in O1-O3

Novel Hubble constant measurement Binary black hole population studies Tests of general relativity

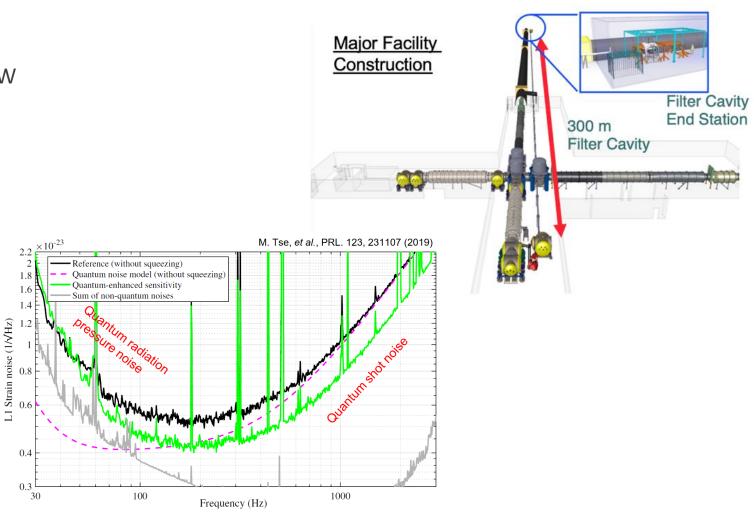
Neutron star equation of state



### Recent Upgrades

#### Frequency Dependent Squeezing

#### LIGO:


- New laser + clean test masses = 400 kW circulating power
- More stray light baffles

#### Virgo:

- Also new laser
- Stray light mitigation
- New output mode cleaner

#### KAGRA:

- 30 W laser
- Implemented angular sensing and control
- Mirrors at cryo temperature
- More baffles!



### So Far in Observing Run 4

Six significant event seen in O4

Most are binary black hole mergers

One contained a ~6 M<sub>☉</sub> object, heavy neutron star or light black hole?

Virgo has had technical issues and has yet to begin observing

48% double interferometer duty cycle, 40% single interferometer

| Event ID  | Possible Source (Probability)              | Significant | UTC                          | GCN                                    | Location                              | FAR                       | Comments |
|-----------|--------------------------------------------|-------------|------------------------------|----------------------------------------|---------------------------------------|---------------------------|----------|
| S230609u  | BBH (96%), Terrestrial (4%)                | Yes         | June 9, 2023<br>06:49:58 UTC | GCN Circular<br>Query<br>Notices   VOE |                                       | 1 per 3.1557 years        |          |
| S230608as | BBH (>99%)                                 | Yes         | June 8, 2023<br>20:50:47 UTC | GCN Circular<br>Query<br>Notices   VOE |                                       | 1 per 231.43 years        |          |
| S230606d  | BBH (>99%)                                 | Yes         | June 6, 2023<br>00:43:05 UTC | GCN Circular<br>Query<br>Notices   VOE |                                       | 1 per 2.7789 years        |          |
| S230605o  | BBH (99%), Terrestrial (1%)                | Yes         | June 5, 2023<br>06:53:43 UTC | GCN Circular<br>Query<br>Notices   VOE |                                       | 1 per 7.0086 years        |          |
| S230601bf | BBH (>99%)                                 | Yes         | June 1, 2023<br>22:41:34 UTC | GCN Circular<br>Query<br>Notices   VOE |                                       | 1 per 1.8492e+07<br>years |          |
| S230529ay | NSBH (62%), BNS (31%),<br>Terrestrial (7%) | Yes         | May 29, 2023<br>18:15:00 UTC | GCN Circular<br>Query<br>Notices   VOE | e e e e e e e e e e e e e e e e e e e | 1 per 160.44 years        |          |

### Future

After O4 is complete, we plan to undergo another set of upgrades before a longer O5 run

LIGO India is being built and will come online in the future

Further down the line, we look forward to third generation observatories

- Einstein Telescope (Europe)
- Cosmic Explorer (US)



## Thanks