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1 Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) uses laser interferometers
to detect gravitational waves. These distortions in spacetime appear as changes in the relative
lengths of the interferometer arms, which causes a phase shift in the light reflected by the test
masses. The detector signal indicates the current strain on spacetime. Analysis of the strain
over time allows extraction of signals from individual events, and these events provide insight
on astrophysical and relativistic phenomenae. Current technological limitations constrain the
observable emissions to those from inspiraling compact binary objects. Other sources are
predicted by models, but no detection has been made yet.

Figure 1: Earthquake event and cor-
responding data loss

Besides gravitational radiation, terrestrial detectors
are subject to a range of other strains, all of which can
interfere with the correct operation of the detectors.
A significant part of this interference is ground mo-
tion; the 4-km interferometer arms are susceptible to
distortion caused by movements in the earth beneath
them. Even the strongest gravitational waves require
a detector sensitivity of approximately 1∗10−21/

√
Hz

to be evaluated with scientific significance.[1] One
common type of ground motion, called the ’secondary
microseism’, is over 10 orders of magnitude stronger
than the real signal at 10 Hz. [1] Earthquakes and
human-caused (or anthropogenic) noise also cause dis-
tortions or loss of the strain signal. Ground motion is
a significant contributor to noise and glitches in the
detector (see figure 1) with both active and passive
isolation utilized in the system to reduce its effects.
[1] However, this isolation cannot completely nullify

its effects, and so it is necessary to determine when the detector is being affected by this
interference in order to find noise sources, test new isolation methods, and avoid misinter-
pretation of such noise as a gravitational wave event.

Figure 2: Periodic elevation in noise
floor in the anthropogenic band dur-
ing daytime hours, followed by reduc-
tion during nighttime hours.

In order to monitor external noise sources, LIGO
maintains many physical environmental monitors, or
PEMs. These include seismometers, accelerometers,
and microphones, all of which produce streams of
time-series data on disturbances in the LIGO system.
We will use traditional clustering methods to evaluate
the seismic state of the detector via analysis of PEM
sensor data. The time-series data from PEM channels
will be divided into time segments. Two methods will
be used to create clusters from these segments. In one
method, a feature extraction process will create a re-
duced dataset to which the clustering algorithms will
be applied. In the other approach, the algorithms will
be applied directly to the raw time-series segments.
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These complementary methods will be used to implement a pipeline which can in real time
determine the seismic state of the detector.

2 Objectives

Given environmental data from PEM sensors, we plan to determine the seismic state of the
LIGO detector using clustering algorithms. The specific objectives are summarized below.

• Objective 1: Dataset creation.

From the time-series PEM data, fixed-length segments of time will be extracted, and
a feature extraction process will transform these segments into a scalar dataset. Alter-
natively, a raw time-series dataset may be created.

• Objective 2: Clustering and evaluation. While individual sensors can provide
clear information about seismic states in some situations, analysis of the entire corpus
of sensor data should improve the reliability of state determination. Given N time
segments, K discrete clusters will be identified, classifying time periods according to
statistical similarities.

• Objective 3: State identification. Manual labeling will permit correlation of clus-
ters with known detector states; this may allow discovery of new states, and provides
room for future exploration. The final goal for this project is the automatic labeling
of the detector’s ground-motion state as a veto provider and data quality metric.

3 Progress

Figure 3: Planned pipeline structure

An initial detection pipeline has been completed. This system implements the central fea-
tures of the machine learning system, from data acquisition to cluster evaluation. A feature
extraction methodology is currently in use, and the DBSCAN and k-means algorithms have
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been put in place. An initial machine learning pipeline has been completed. It acquires
accelerometer data from sensors located in the Internal Seismic Isolation system, filtered
with a BL-RMS filter and bandpassed according to apparent project standards. This data
is split into segments and run through tsfresh feature extraction. The resulting features
are clustered using either a k-means [2] or DBSCAN [3] algorithm, as implemented in the
scikit library. [4] The clusters are then visualized with the matplotlib plotting function,
originally with a simple line plot and soon with color coding.

A rudimentary time-segment label set is generated, grouping time segments which display
similar characteristics (from the point of view of the algorithm). This classification is visually
represented as a graph or set of graphs with lines colored according to their cluster identifier.
Notable events in the sensor data can then be compared with the clustering result, allowing
insight into the characteristics deemed important by the algorithm.

So far, the k-means algorithm shows the most promise in feature clustering. It identifies
times of interest across a broad range of segment lengths; so far, 30 second and 300 second
segments have both been shown to be effective in visual analysis, with 240 second segments
being the most carefully explored. However, some inconsistency has been noted. Because
k-means is not deterministic, running the same process on the same data multiple times can
yield drastically different results. In current testing this seems to occur most often when
higher values of k are used. The algorithm is initialized with the default settings, using the
k-means++ initialization; this chooses initial centroids based on a probability distribution
in order to speed up convergence. This specific implementation selects from multiple trials
for extra precision.

Figure 4: A promising clustering result; yellow lines follow the ID of the segment label

The DBSCAN algorithm has also been explored. Initial results are not promising. A grid
search across the available settings (EPS and minimum samples [4]) did not produce useful
clusters. The EPS parameter determines the classification of each point based on the number
of points within range, while the value of minimum samples determines the points required
to form a cluster. EPS is most important for cluster behavior, so the grid search focused on
its value. Setting EPS too low causes all points in the dataset to be treated as noise, while
setting it too high merges all points into a single cluster. For the 30-hour dataset in use,
with 240-second segments, EPS values from approximately 12000 to 13500 were tested; this
covered the range from all noise to single cluster. Steps of 100 were tested. The minimum
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sample parameter was varied from 2 to 5 for these tests. None of the resulting cluster sets
correlated with visually obvious points of interest in the sensor data.

Figure 5: Note the lack of values besides 0 and -1 – we have a single cluster and much noise

Cluster evaluation metrics have been applied to various k-means cluster results. The Davies-
Bouldin, silhouette, and Calinski-Harabasz algorithms have been tested. These metrics
evaluate the properties of the clusters, not their correlation to ’truth’. This is helpful for
comparing ’successful’ clusterings when the clusters are already clearly correlated to points of
interest. However, when that correlation is weaker, the metrics fail to provide much insight.
Figure 6 shows the tested metrics as applied to the data and algorithms displayed in Figure
4; the silhouette coefficient and D-B index both point towards a cluster number of 4, which
does indeed work well for this situation.

Figure 6: Cluster evaluation metrics for 30 hour dataset split into 240-second chunks

4 Challenges and Future Work

Cluster analysis is difficult because of the aforementioned lack of ground truth. The Davies-
Bouldin, silhouette, and Calinski-Harabasz metrics are all usable, as well as the Hopkins
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statistic. However, these are less helpful when the challenge is creating clusters that correlate
with expected behavior. The general trend is towards a worse score with a higher number of
clusters (see figure 6), which is expected behavior for a clustering algorithm; however, this
only corroborates the results of visual evaluation.

A continued search through clustering parameters and algorithms will include analysis of raw
data, different feature extraction parameters, and a larger dataset. Analyzing raw data may
require different algorithms and different distance metrics such as dynamic time warping
(most helpful when similar events occur over different timescales). tsfresh provides a list
of default features which can be easily modified; evaluating the importance of each feature
to the clustering results will allow the choice of a more focused parameter set, which will
improve clustering performance and reduce computation requirements. And more data can
be explored, such as LIGO glitch rate information and detector range statistics.

Points of interest in the datastreams include known noise events, false GW events, and other
unexpected behaviors. Analysis of PEM and internal seismic data from those times should
provide some insight into the factors that negatively affect the detector. And as this will act
as a ground truth state, clustering can become more automated; this allows different metrics
and different algorithms to be used for supervised learning.
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