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1 Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) uses laser interferometers
to detect gravitational waves. These distortions in spacetime appear as changes in the relative
lengths of the interferometer arms, which causes a phase shift in the light reflected by the test
masses. The detector signal indicates the current strain on spacetime. Analysis of the strain
over time allows extraction of signals from individual events, and these events provide insight
on astrophysical and relativistic phenomenae. Current technological limitations constrain the
observable emissions to those from inspiraling compact binary objects. Other sources are
predicted by models, but no detection has been made yet.

Figure 1: Earthquake event and cor-
responding data loss

Besides gravitational radiation, terrestrial detectors
are subject to a range of other strains, all of which can
interfere with the correct operation of the detectors.
A significant part of this interference is ground mo-
tion; the 4-km interferometer arms are susceptible to
distortion caused by movements in the earth beneath
them. Even the strongest gravitational waves require
a detector sensitivity of approximately 1∗10−21/

√
Hz

to be evaluated with scientific significance.[1] One
common type of ground motion, called the ’secondary
microseism’, is over 10 orders of magnitude stronger
than the real signal at 10 Hz. [1] Earthquakes and
human-caused (or anthropogenic) noise also cause dis-
tortions or loss of the strain signal. Ground motion is
a significant contributor to noise and glitches in the
detector (see figure 1) with both active and passive
isolation utilized in the system to reduce its effects.
[1] However, this isolation cannot completely nullify

its effects, and so it is necessary to determine when the detector is being affected by this
interference in order to find noise sources, test new isolation methods, and avoid misinter-
pretation of such noise as a gravitational wave event.

Figure 2: Periodic elevation in nosie
floor in the anthropogenic band dur-
ing daytime hours, followed by reduc-
tion during nighttime hours.

In order to monitor external noise sources, LIGO
maintains many physical environmental monitors, or
PEMs. These include seismometers, accelerometers,
and microphones, all of which produce streams of
time-series data on disturbances in the LIGO system.
We will use traditional clustering methods to evaluate
the seismic state of the detector via analysis of PEM
sensor data. The time-series data from PEM channels
will be divided into time segments. Two methods will
be used to create clusters from these segments. In one
method, a feature extraction process will create a re-
duced dataset to which the clustering algorithms will
be applied. In the other approach, the algorithms will
be applied directly to the raw time-series segments.
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These complementary methods will be used to implement a pipeline which can in real time
determine the seismic state of the detector.

2 Objectives

Given environmental data from PEM sensors, we plan to determine the seismic state of the
LIGO detector using clustering algorithms. The specific objectives are summarized below.

• Objective 1: Dataset creation.

From the time-series PEM data, fixed-length segments of time will be extracted, and
a feature extraction process will transform these segments into a scalar dataset. Alter-
natively, a raw time-series dataset may be created.

• Objective 2: Clustering and evaluation. While individual sensors can provide
clear information about seismic states in some situations, analysis of the entire corpus
of sensor data should improve the reliability of state determination. Given N time
segments, K discrete clusters will be identified, classifying time periods according to
statistical similarities.

• Objective 3: State identification. Manual labeling will permit correlation of clus-
ters with known detector states; this may allow discovery of new states, and provides
room for future exploration. The final goal for this project is the automatic labeling
of the detector’s ground-motion state as a veto provider and data quality metric.

3 Approach

Figure 3: Programming approach

Time-series data will be acquired from various ground motion sensors as well as other instru-
ments which show related noise. This data will be separated into fixed-length segments, with
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the length as an experimental parameter. Representations of these segments will be evalu-
ated in two forms. First, the tsfresh Python library [2] will be used to extract meaningful
statistical features. This significantly reduces the dimensionality of the dataset. Second, in a
shape-based approach, the raw data itself will be treated as a representation of the segment.

In either approach, the next step is the application of clustering algorithms, found in the
scikit-learn [3] Python library. Initial algorithms in use include k-means [4] and DBSCAN.
[5] Various clustering parameters will be explored. The most interesting parameter is the
specified number of clusters, k. Because there may be undefined and unknown ground-
motion states, the ’true value’ of k is unknown, so comparing clustering results with various
values for k will provide interesting data. Time segment length can also be adjusted; this
may affect the types of noise which are detectable, as noise events may vary in length.

Cluster quality will be evaluated using metrics available in scikit. These may include the
variance ratio criterion and the Davies-Bouldin index. Because the ’true state’ of each time
segment, known as the ground truth, is not necessarily known, many metrics cannot be used
for cluster evaluation. However, because some ground motion states are well defined, clusters
may be compared to known states in some situations. And clusters with unknown states
may give clues to the existence of entirely new states. A diverse evaluation approach will be
utilized, and should offer a broad field for analysis and experimentation.

4 Project Schedule

We present an outline of the projected project schedule.

• Before arrival: Familiarization with coding toolkits by reading documentation and
experimentation with

• Week 1: Initial orientation to gain familiarity with the toolkits and manipulating LIGO
datasets.

• Week 2: Creation of feature-extraction pipeline using tsfresh

• Week 3-4: Exploration of clustering algorithms, their results, and the corresponding
quality metrics

• Week 5-6: Interim report. Further statistical analysis of clusters

• Week 7: Exploration of correlation between cluster properties and novel seismic states

• Week 8: Begin final report. Continued exploration of states and their relationship to
clusters.

• Week 9-10: Completion of final report
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