Developing spatially-tunable adaptive optics for LIGO

Celeste Virador, LIGO SURF 2023

Mentors: Dr. Jon Richardson and Dr. Huy-Tuong Cao, UCR

LHO Noise Budget (O3)

Thermal Compensation System (TCS)

1

Brooks, Overview of Advanced LIGO Adaptive Optics, 2016.

FroSTI: Front Surface Type Irradiator

Jon Richardson, Active Wavefront Control for Megawatt Arm Power, 2022

mm

1/8th of Full Ring Heater

y

mm

Huy Tuong Cao, Development Status of HOM Ring Heater, 2022

5

Full Ring Heater, Surface Irradiance $\left[\frac{W}{m^2}\right]$

6

1/8th Heater Unit, Surface Irradiance $\left[\frac{W}{m^2}\right]$

Angular Distribution of Average Irradiance: Normalized by Deposited Power

Radial Distribution of Average Irradiance: Normalized by Deposited Power

у

12

Horizontal Distribution of Average Irradiance: Normalized by Deposited Power

Vertical Distribution of Average Irradiance: Normalized by Deposited Power

1/8th Model

4 1/32nd Models

1/32nd Linear Heater Unit: Surface Irradiance $\left[\frac{W}{m^2}\right]$, No Bounds

1/32nd Linear Heater Unit: Surface Irradiance $\left[\frac{W}{m^2}\right]$, Flat Bounds

Higher Intensity Level within Target

Horizontal Distribution of Average Irradiance: Normalized by Deposited Power

Vertical Distribution of Average Irradiance: Normalized by Deposited Power

Designing New Edge Coverings

Design Basis:
 Compound
 Parabolic
 Concentrator

Winston, Jiang, and Ricketts, Nonimaging Optics: A Tutorial, 2018.

Parabolic Surface, Extruded Through Heater Unit

Resulting Heater

Horizontal Distribution of Average Irradiance: Normalized by Deposited Power

25

Vertical Distribution of Average Irradiance: Normalized by Deposited Power

Linear Model, 1/32nd Unit and Target

 Notice:
 ➤ Separation of <u>No</u> <u>Bounds Point</u> from other points
 ➤ FWHM/Tail Area Value for Model 2

Tail Area vs. Standard Deviation: Vertical Distribution

Normalized Irradiance Distributions, 1/32nd Linear Model/Target

Confirming Effects of Edge Surfaces

No Bounds

Average Horizontal Irradiance

Average Vertical Irradiance

Straight Line Model

Arc Model

50 1/32nd Heater Unit, Surface Irradiance $\left[\frac{W}{m^2}\right]$, Flat Bounds 137.8 200 40 122.4 107.1 100 Average Irradiance $\left[\frac{W}{m^2}\right]$ - 91.8 y, [mm] -76.5 ⊆ 0. 30 61.2 -10045.9 30.6 -200 - 15.3 0.0 20 -200 100 200 -100ò x, [mm] Model 3 Model 2 10 Model 1 Flat Bounds No Bounds 0 Target 0.000 0.698 1.396 2.094 2.793 3.491 4.189

Angular Distribution of Average Irradiance: Normalized by Deposited Power

1/32 Unit Edge Coverings, Arc Model/Target

Angle [Radians]

Tail Area vs. Full Width Half Max: Angular Distribution

Notice: ➤ Low FWHM/Tail Area value for Model 2

Radial Distribution of Average Irradiance: Normalized by Deposited Power

1/32 Unit Edge Coverings, Arc Model/Target

Tail Area vs. Standard Deviation: Radial Distribution

1/8th Straight Line Heater Unit

4 1/32nd Straight Line Heater Units

Horizontal Distribution of Average Irradiance: Normalized by Deposited Power

Vertical Distribution of Average Irradiance: Normalized by Deposited Power

Angular Distribution of Average Irradiance: Normalized by Deposited Power

Tail Area vs. Full Width Half Max: Angular Distribution

Radial Distribution of Average Irradiance: Normalized by Deposited Power

Tail Area vs. Standard Deviation: Radial Distribution

Next Steps

Jiang, Winston, Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications, 2015

- Further exploration of parabolic edge coverings on arc models
- ➢ Elliptical
 Concentrator
 Design → Elliptical
 Side Reflectors
- GeneralizedSurfaces

Conclusion

- Characterized the spread of radiation from both arc and linear heater units
- Identified capability of flat reflective boundaries to improve confinement of radiation in angular dimension
- Explored the design and optimization of parabolic edge surfaces
- Identified capability of parabolic surfaces to improve radiation confinement for both 1/32nd heater units and 1/8th heater units in the linear and angular dimensions

Acknowledgements Caltech 49

Celeste Virador cvirador@berkeley.edu