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THE SPECTRUM OF GRAVITATIONAL WAVES @esa
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One of General Relativity’s bold predictions — Gravitational Waves (GWs) — ripples in spacetime

Any time-varying non-axisymmetric mass distribution can produce gravitational waves

Current ground-based detectors can observe high-frequency gravitational wave sources ( ~ 10Hz to a few 1000Hz)

o Compact Binary Coalescences (CBCs), Supernova Explosion, Rotating Neutron Stars, etc..

Focus here: CBCs



Compact Binary Mergers in LIGO/Virgo bandwidth

e Compact Binaries refers to binaries consisting of a

pair compact objects — Radius « Mass

e Compact objects include white dwarfs, neutron
stars, and black holes.

o LIGO/Virgo detectors observes binary neutron star
[BNS], binary black hole [BBH] and neutron star-

black hole [NSBH] mergers.

AL
, Strain = 5 = — 1072 5 AL ~ 107 8¥m

[Given L ~ O(1 km)]

e Check Viola’s slides to know why observe compact

binary mergers

[Link to video]



https://www.youtube.com/watch?v=zRmwtL6lvIM
https://www.youtube.com/watch?v=zRmwtL6lvIM
https://www.youtube.com/watch?v=zRmwtL6lvIM
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Compact Binary Signal
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Fig: Gravitational waveform of a non-spinning black hole binary



Compact Binary Parameters

» In General Relativity, quasi-spherical black hole binaries are described by @ which consists of 15

parameters.
o Extrinsic:

Sky Location: (a, 0)

e Intrinsic:

Luminosity distance: D; (Or equivalently

e Two component masses: m;, 1, the redshift z)

o Sixspin Components: y, % Binary orientation parameters: (l, go)

Polarisation angle: y

Merger time: ¢,

o More parameters required if matter or new physics is included L — orbital angular momentum direction

P. Schmidt FSPAS (2020)

* 7



https://www.frontiersin.org/articles/10.3389/fspas.2020.00028/full
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Phenomenology of Black hole binaries

Fffect of total mass

Detector Frame Total Mass = Redshifted source frame mass - Gravitational waves are redshifted due to spacetime expansion

|

0.2 Ml
Mi(1 -
0.0 T e TN DTN
02 S S— SRR S u
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
i[s) +1.564316116€9
5/6 q m;  Heavier black hole
(11 0) < (My(1+2)) \/ 72 1=, Lighter black hole —

T

Leading order Heavier binary > Larger amplitude
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Phenomenology of Black hole binaries

Effect of mass ratio
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Phenomenology of Black hole binaries

Effect of spins

— Non-Spinning

Aligned-Spinning
— - Black holes with aligned spins

B EO .. .................................................... . . .................................................... X1, X are ali an ed with z s black holes in spiral to
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5] 115643161169 closer separation > longer, stronger GWs
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inspiral to closer separation > shorter, weaker GWs

| —— Non-Spinning
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— Precessing
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- Learn More



http://www.gw-indigo.org/tiki-index.php?page=Inspiralling+black-hole+binaries
http://www.gw-indigo.org/tiki-index.php?page=Inspiralling+black-hole+binaries
http://www.gw-indigo.org/tiki-index.php?page=Inspiralling+black-hole+binaries
http://www.gw-indigo.org/tiki-index.php?page=Inspiralling+black-hole+binaries
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Gravitational Wave Detector Data

. GW interferometers record data as a discretely sampled time seriesd = {d (tl), o d (tN) } at sampling

frequency f, = 16kHz — N, = T X f,where T = data segment duration

amples

Assuming linear detector response,

d 0 « Contains contributions from myriad of noise sources

. |n| > — Needle in a haystack problem!
data noise:
: oo Stochastic
signal strain:
Deterministic for CBC Refer to Victoria’s and Ronaldas’s talk for

more details

Goal: To find a template or model waveform h (0’) ~ S (0) suchthatr =d — h(0) ~ n
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Noise Model

Assumption: Noise in each detector follows a zero-mean wide-sense stationary

multivariate Gaussian distribution (Noise’s DC component can always be
subtracted out).

Wide-sense stationary: Elements of noise correlation matrix

C ( ‘ t, — tk‘ ) = (n(t,) n(t,)) — depends on time-lag between samples.

In Fourier domain, the noise correlation matrix is diagonal,

2 T
< n(f) ‘ > = ESn(fk), S, (f) =Noise power spectrum > calculate using Welch

method.

Zero-mean multivariate Gaussian:

N
2 |d (f;
U (d | noise, Sn) X Hexp 7‘19 <(f))‘ ,

Presence of a signal adjusts the mean value
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Refer to Ronaldas’s talk for more details


https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html
https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html
https://online.stat.psu.edu/stat500/lesson/3/3.3/3.3.1
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Step-2: Whiten the template: i — (fll )

Matched Filtering ‘ N

Adjust the template’s amplitude at each frequency to account for the
detector's noise level

| d(f) 02 o — S e
Step-1: Whiten the detector data: d — | |

° \/Sn(]ﬂl) Q’E 0.0 -

One way to find a GW signal is matched filtering.
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5] +1.564316116€9

o Step-3: Calculate the optimal signal-to-noise ratio (SNR) of the template

0.15 0.20 0.25 0.30 0.35 0.40

+1.564316116¢e9 h*(‘fl‘ | 0)% ﬁ | 0,
v : R ) S(f-)< |

Af, Af=frequency

resolution

o Step-4: Cross correlate the whitened data and whitened normalised

0.15 0.20 0.25 0.30 0.35 0.40 template
([s] +1.564316116¢9

(d1h)

Whitening normalises the power at all frequencies so thatany /) = > matched-filter SNR
excess power at any frequency becomes obvious. \/(h | h)

Sathyaprakash + Dhurandhar, PRD 44, 3819 (1991)

D—

———


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.44.3819
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Matched Filtering with unknown binary parameters

We don’t know the signal’s merger time f. — matched filter as a

function of time and find the peak of p(7).

Matched filtering is very sensitive to signal’s phase evolution + we
don’t know the binary parameters a priori = numerically

maximise p(7) using a template bank >Template with highest p(7)
Is the best-matched template.

Computationally infeasible to search for every possible binary

parameter combination — assume signal is adequately

represented by quasi-circular (non-precessing) quadrupole

modes — search using a template bank parameterised by

(ml,mz) and (;(1 L, ok i).

Note: Neighbouring templates in the bank are not too dissimilar.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.44.3819

19

Headaches!

Matched filtering is optimal if detector data is

Gaussian.

GW data is plagued with intermittent non-Gaussian
transients or glitches - raises false alarms & reduce
search performance

Solution: Use a combination of vetoes, gating,

coincidence tests and signal-noise discriminators to

penalise/remove noisy glitches.

The four templated searches namely PyCBC, GstLAL,

MBTA and SPIIR implements slightly different

methods to handle the non-ideal noise properties.

1888Lines

Koi_Fish

Repeating_Blips

1408Ripples

Air_Compressor Blip

Low_Frequency_Burst Low_Frequency_Lines

Scratchy Tomte

vetoes > Refer Ronaldas talk

Light_Modulation

L4

Scattered_Light


https://pycbc.org/
https://lscsoft.docs.ligo.org/gstlal/
https://arxiv.org/abs/2012.11512
https://git.ligo.org/spiir-group/spiir
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Coincidence test ——

100 _ ................................................. ................................................. ................................................ .................................................
~ —— With Glitch

Demand: if the trigger is of astrophysical origin then:

0

Identify excess noise in whitened data stream > window them out

e« must be observed within physically allowed time-

— ] . . — o delays across the detector network. —
v v m e« must share the same best-matched template

—2.0 ~15 ~1.0 —05 0.0 0.5 1.0 1.5 2.0
Time — Lolitch [s]

Usman et al. CQG 33 (2016) 21, 215004

Integrated Data Quality

o Use machine learning and data from auxiliary
channels to predict the likelihood of a glitch being

present in the strain data.
o Clean data > improves statistical significance

Instrumental noises
are of local origin!

Usman et al. CQG 33 (2016) 21, 215004
Abbott et al. PRL 116, 061102

Essick et al. (arXiv:2005.12761 )
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- Courtesy: Sathya



https://inspirehep.net/literature/1387292
https://inspirehep.net/literature/1387292
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
https://inspirehep.net/literature/1797911

D 2
2 Step-2: Calculate y* = r p? — P
’ 2p -2 &

o Trigger consistent with template)(r2 — 1.

100.00
. 20 o Use y-output to calculate ¢ = f(p, x*) = amended p
15
68.31 - l ®
Auto-correlation test
59.72 A . . .
5 5 e Matched filtering doesn’t produce just an SNR peak, but a
‘:;E: 54.86 A N& . .
. 0o B time-series of SNR data.
% 50.79 - & . ] '
s . -5 N SR """"" — Measured p(t) []
} — - Predicted p(t)
1] I— S ————————————
42.34 -10 :
37.88 - = 5
-15 QU
| :
32.29 A 0
—-20
23.40 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 —9
Time (s) - 1242442967.465 .
o Step-1:Divide the template into p frequency bands e T T 0.00 0.05 0.10
of equal expected power. i frgnupeale(s)
o« Compare the SNR time-series shape to the predicted
Allen PRD 71 (2005) 062001 shape for a template waveform. ;... et al Pro 95. 042001 (2017)

Usman et al. CQG 33 (2016) 21, 215004 — S

I— B —



https://inspirehep.net/literature/649978
https://inspirehep.net/literature/1387292
https://doi.org/10.1103/PhysRevD.95.042001
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Statistical Significance

N,

ifo

Z QIZ , where N.. = # of detectors in the network. Other pipeline do this differently

\4

Step-1: Rank coincident candidates > PyCBC calculates R =

tH1

o Step-2: Generate background triggers by time-slides method >

i W shift one detector’s data with respect to other(s) and look for
i accidental coincidences. (GstLAL doesn’t use this method.)
L1 106 _ ................................ ................................ ................................ ...... : I;ackground E
: v Foreground
tc=0 : O b g
|
tlu Courtesy: Tucker

1 +n,(R, > R)
T, ’

Of background triggers With ranka > R in time Tb 10—2_ ................................ ................................ GW19521

Step-3: Calculate false alarm rate or FAR :=

—T/FAR

o Related to false alarm probabilityp =1 — ¢
XVas etal. CQG 27 (2010) 015005

30 —20 ~10 0 10 20 30
Rank



https://arxiv.org/abs/1901.08580
https://inspirehep.net/literature/822853

Non-templated searches as an alternative

Templated searches assumes that the putative signal is well-modelled by the template waveforms > Need not be the case > Search is less
flexible

Alternative-1: use a non-templated search such as coherent WaveBurst or oLIB.

o Astrophysical transients emit short-lived gravitational waveforms.

o Thiswaveforms create localised excess in energy in the time-
frequency plane.

o Identifying such excess in energy coherently across the detector

network is a strong indication of an event.

1.0 A
Alternative-2: use a search that models GW sighals in a

morphology-independent through a sum of sine-Gaussian
waveforms (Morlet-Gabor wavelets). Eg: BayesWave

hl 1 Al A
0.0 4 |»|~|-;"|(|

03- ¥

I

L1 whit. strain

’I ““n'”‘ i ' ‘J" "l,f

Klimenko et al. CQG 33 (2016) 21, 215004

Lynch et al. PRD 95, 104046 (2017)

Cornish et al. CQG 32 (2015) 13, 135012 2.3 2.4 2.5 2.6 2.7 2.8 2. 9 3.0
GPS time [g] +1.12625946 % 10



https://gwburst.gitlab.io/
https://doi.org/10.1103/PhysRevD.95.104046
https://git.ligo.org/lscsoft/bayeswave
https://inspirehep.net/literature/1387292
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.104046
https://inspirehep.net/literature/1322344

Summary

GW signals from compact binary mergers are pretty
well-modelled.

Matched filter searches use these waveforms to find
the signals.

Matched filtering is extremely sensitive to signal’s
phase evolution and is optimal only when detector
noise is Gaussian - not the case.

Therefore templated searches use different
techniques to account for non-Gaussianities .

Use non-templated searches to catch the unexpected.

Need to improve our analysis as detectors continue to
Improve.
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