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1 Progress through six weeks

In this work, I am studying prospects for parameter estimation of BBH4+SMBH triple systems using space-
based GW observatories. In particular, I am extending the work of [4] to the case where the stellar-mass
BBH has an eccentric orbit about the central SMBH and investigating how the eccentricity impacts the
ability of GW observatories to measure certain relevant parameters.

1.1 Mathematical Description of the SMBH-+BBH Triple System
1.1.1 Geometry

o Definition
log M, | Detector Frame Chirp Mass: p3/%(mq + mg)?/®
q Mass Ratio mq/mq
log Dy, Luminosity Distance
te Coalescence Time
O Coalescence Phase
05,0 Line of Sight of BBH+SMBH Triple
07,0, Orientation of Total Angular Momentum J
AL Angle Between L; and L,
Qg Initial Phase of L; Around L,
log M3 SMBH Mass
log a, Outer Orbit Semimajor Axis
Yo Outer Orbit Argument of Periapsis
€o Outer Orbit Eccentricity
T, Time when BBH Reaches Periapsis

Table 1: Relevant parameters in BBH4+SMBH triple system for GW observed by detectors. Bars over angles indicate the Solar
System coordinate frame.

We first describe the full geometry of the SMBH+BBH triple system and waveform with an eccentric outer
orbit. In Figure 1, the barred coordinates demarcate a Solar System centered coordinate system, while
the unbarred coordinates demarcate a coordinate system based on the orientation of the space-based GW
observatory. In order to compute the antenna response, we need to be able to convert from the unbarred
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Figure 1: Left: Geometry of the SMBH+BBH triple system. Right, inset: View of the triple system normal to the plane of the
outer orbit. See the discussion below and Table 1 for definition of all parameters. Figure dimensions do not give any indication
of true scale. In this work, we neglect the precession of v, as the BBH orbits the SMBH.

coordinates to the barred coordinates, which is as follows:

T = _i sin(2¢q)Z + H%S(?(bd)ﬁ + ? sin(¢pq)Z (1)
y= _3%08(2%) +t1 Sln(%d)@ g (pa)Z 2)
Z= —§ cos(¢a)T — ? sin(¢a)y + %% (3)

The sky location of the hierarchical triple is (fs, ¢5), which points along the vector N , and has a luminosity
distance of dy,. The triple itself consists of a BBH with black holes of masses M; and M, or equivalently, a

chirp mass of M = % and mass ratio of ¢ = My/M;, and an SMBH of mass M3. The shape of the

BBH’s orbit around the SMBH can be determined entirely (at least to a sufficiently close approximation) by
the semimajor axis a, and the eccentricity e,.

The unit vector of the angular momentum of the two lighter black holes in the binary system is L, and
the unit vector of the angular momentum of the binary’s orbit about the SMBH is L,. The angle between
L; and Lo is Ap. AL stays constant in time, but the phase of LZ, a(t), changes as the coupling between the
”spin” of the BBH and the orbit of the BBH about the SMBH induces precession. Using Eq. 9.200 of [2],
we find the de Sitter precession frequency

3
Qas(t) = 7% Fay(1—c2)

G M; [(1 + e, cos(f/(z)))3] (4)
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where f(t) is the true orbital anomaly as shown in the inset of Figure 1. The secular precession rate agrees
with that in the introduction of [4]: that is, when integrated over one full orbital period of the BBH around
the SMBH, the orbit-averaged de Sitter precession frequency that matches Eq. 1 of [4]. Since

= stLO X Li (5)

the inner orbit angular momentum L; traces a cone around the outer orbit angular momentum Lo. The
phase of L; in this cone, as shown in the inset of Figure 1, can be found by integrating the time-dependent
de Sitter precession rate:

alt) = ao + /t " Qus(t')dt (6)

where aq is the phase at the time of the binary coalescence t..
Finally, to quantify the Doppler shift, we need to find a few additional parameters. First, the inclination
of the outer orbit angular momentum follows

cosLy = N - ﬁo (7)

Next, the argument of periapsis, ,, is defined as the angle between the major axis of the elliptical orbit and
the line in space which is parallel to both the plane of the orbit and the T — ¥ plane. It is well known that
an elliptical orbit does not admit an analytical solution for the position in the orbit as a function of time.
However, there are some well-established numerical methods for solving this problem. The distance of the
BBH from the SMBH is given by ,
r(t) = _ao(l-e) (8)
1+ e, cos(f(t))
with f(¢) once again being the true orbital anomaly. To find the true orbital anomaly, we must first find the
eccentric anomaly, which is similar to the true orbital anomaly except that the origin used for this quantity
is the center of the ellipse rather than the focus where the SMBH is located. Kepler’s equation gives the
relation between the eccentric anomaly u and time:

u(t) — epsin(u(t) = Gi‘ff* (t—T) = 2n ;OT )

where T, is a constant which denotes the time when the BBH reaches periapsis. We can subtract multiples
of P, = —=2= from t — T, until it falls between 0 and 1, and then apply Newton’s method to find w(t),

A/ GIM;;/ag

as this equation does not have an analytical solution. Explicitly, we conduct an iterative process, where

up = 271'"‘;,T” and
o

up — (un — €psinuy,)

(10)

Up41 = Up +
1—e,cosuy,

Usually, only roughly five iterations are needed to obtain high accuracy in w(t). The eccentric anomaly can
be converted to the orbital anomaly using

tant(t)) - Etan(éu(t)) (11)

We can now proceed to calculate the strain detected by the space-based observatory, using the results of [1].
The overall measured signal is

1.1.2 Waveform

scas = he /(A )7 + (Ao P exp{—i®p + 207 + Bp)]) (12)

where h¢ is the carrier waveform, A and F' are the polarization-dependent amplitude modulation and antenna,
response, respectively, and ®p, ®p, and P are the polarization, Thomas, and Doppler phases. It is this



signal that we use to calculate elements of the Fisher information matrix. Post-Newtonian expansion gives
a carrier waveform, in the frequency domain (and geometrized units G = ¢ = 1), of

5\1/2 M5/6 —7/6 T 3 5
_ I ; _ _ e —5/3
96) 7T2/3dL fGW eXp{Z[Qﬂ-fGWtC ¢c 4 + 4(87erGW) ]} (13)

he(faw) =<

where ¢, is the phase at coalescence. There is an analytical form for the time corresponding to a given GW

frequency:
5 1

t(fow) =tec — (14)
25678/3 M5/3fg/v?/
The two polarizations of the strain, hy and hy, are modified by the amplitude factors
Ay =14 (L;-N)? (15)
Ay =—2L; N (16)
and furthermore, the detector response F' to incoming waves of each polarization varies, as
1
Fy(0s,ds,%s) = 5(1 + cos? g) cos 2¢5 cos 21hg — cos fg sin 2¢5 sin 21g (17)
1
Fy(0s,ds,vs) = 5(1 + cos? Og) cos 2¢5 sin 21 + cos fg sin 2¢5 cos 21g (18)
where R o R
L;i-2—(L;-N)(:(-N
tan g = il )& N) (19)

N . (iz X 2)
(note the use of the detector-frame coordinates here). The first of the three additional phases is the polar-

ization phase, which allows us to rewrite the signal strain in terms of a single amplitude and a modifying
phase, seen in Eq. 12 (as opposed to h(t) = hy (t)Fy(t) + hx (£)Fx (¢)). Tt is given by

A Fx(t)
AL (0)F (1)
The second is the Thomas phase, which can be understood as the change in signal phase which results from

ensuring that the orbital separation vector remains orthogonal to the angular momentum as the angular
momentum precesses. It is given by

tan ®p(t) = (20)

te Lz . N ~ ~ dIA/Z
Op(t) = 7/15 dt{m} (Li x N) - dat (21)

The final phase term is the Doppler phase shift, the phase shift induced by the evolving distance between
the detector and the GW source. There are two contributions to this phase. The first is the contribution
from the detector, given at a particular time ¢ by

D p det(faw) = 2m few (1 AU) sin O cos(dget — ¢s) (22)

The other is from the source, which is modulated by the changing orbital radius as well as the inclination of
the outer orbit and the position of the BBH in that orbit:

ao(1 —e2)siney

e e ) S+ %) (23)

Op sre(fow) = 27 faw

noting the difference between the GW frequency few and the true orbital anomaly f(t).
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Figure 2: Fractional uncertainty in M3 expected for a TianGO-like observatory with e, = 0.3, and all other parameters equal
to that in [4].

1.2 Development of Parameter Estimation Code

I have created a new version of the code used to compute the waveform of a BBH orbiting an SMBH with a
circular outer orbit (e, = 0) so that it now allows for eccentric outer orbits. This modification requires the
addition of two parameters to the waveform (the eccentricity itself, and the argument of periapsis, which is
undefined for a circular orbit). It also requires some basic analytic expressions for the precession of the BBH
angular momentum L; about the orbital angular momentum L, to be modified into numerical integrations,
as the precession frequency depends significantly on the distance of the BBH from the SMBH, and substitutes
the ordinary expression for the position in a circular orbit as a function of time with Kepler’s equation, which
accounts for non-zero eccentricity (and thus a non-constant orbital angular frequency) and can be solved via
iteration of Newton’s method. I have confirmed that this new waveform code produces identical results to
the older version when e, is taken to be 0 and all other parameters are matched. With this confirmation
complete, I am now looking to generate parameter estimation contour plots to obtain an understanding of
how a non-circular outer orbit can change our ability to measure parameters of these hierarchical triples
from the situation where e, = 0.

2 Current results

Figure 2 shows the fractional uncertainty in the SMBH mass M3 with an outer BBH orbit with eccentricity
0.3. All other parameters are identical to that used in Figure 5 of [4]. While I am continuing to look for
the source of the patchy behavior seen above the Pys = 10yr dashed line, the behavior of the plot below the
line is promising. In comparison to Figure 5 of [4], there is a slight but broad improvement in the parameter
estimation precision across the (M3, a,/Ms) parameter space. This is consistent with our expectations: an
eccentric outer orbit can produce more substantial waveform modulation due to both the wider range of
possible Doppler phase shifts throughout the orbital path and the non-constant rate of de Sitter precession.

One detail that is worth noting is the set of parameters used to compute the waveform. The waveform
can be reparametrized in terms of M3 and Q, = \/GM3/a3 as opposed to M3 and a,. As it turns out, the
orbital frequency 2, can be measured quite well (i.e., its diagonal element in the inverted Fisher matrix is
very small) — much better than other parameters like Mj, for example — by TianGO as it orbits around
the Sun, so in order to simplify the Fisher analysis, we can treat €2, (and other parameters with very small
diagonal entries in (I‘ij)_l) as perfectly well known. In practice, we therefore remove €2, from the parameters



in the Fisher matrix — this will allow us to reduce the magnitude range of values in the computed covariance
matrix and thus potentially avoid numerical precision errors inherent to inverting matrices with such large
magnitude ranges [3]. As it turns out, the two additional parameters introduced in an eccentric outer orbit
— e, and 7, — along with T,, can all be measured to high precision as well. So, when studying parameters
which are not measured as well (log M3, for example), we can safely omit them from the Fisher matrix. This
increases our computational efficiency in addition to the benefits described in [3].

3 Problems with numerical precision

In calculating the Fisher matrix, we compute the derivative of the waveform with respect to a wide set
of parameters. These derivatives may vary by many orders of magnitude — in fact, in some of the Fisher
matrices I have calculated, I have observed differences in scale approaching 10'® between certain terms. As
such, the inversion of the Fisher matrix can be quite sensitive to slight errors, as the range in scale can
magnify these errors substantially. In a high dimensional Fisher matrix (in our case, we frequently use 10 or
more parameters), this concern is exacerbated, as described in [3]. As such, computing the Fisher matrix to
high precision with numerical methods is a task of great importance.
It is well-known that the derivative of a function, by definition, is a limit, that is:

. (O + AG0)) — W — A8,

(24)

where 6; is a single parameter in the total set of parameters g. In many scenarios, we can calculate this limit
analytically, but when many parameters are involved, computing this result becomes overly complicated.
Instead, we exploit the limit definition and choose some small value of Af; < 6; and compute the expression
above explicitly for that choice of Af;. However, this numerical method is not without its faults. If A#; is
taken to be too small, the change in h may be smaller than the numerical precision capable of the particular
computer in use, and thus the derivative calculated may become orders of magnitude off its true value. On
the other hand, if Af; is too large, the approximation that h is roughly linear within a region of size Af; of
] (the fundamental assumption of the limit definition of the derivative) fails, and the calculated derivative
will once again miss the true value. This suggests that there is a "sweet spot” for each parameter, where
Af; is small enough that h is roughly linear in (6; — A8, 6; + Af;) but not too small that the change in h
after the parameter adjustment falls below machine precision. In general, we expect that before the machine
precision effects become prevalent, the error in the calculated derivative 9p, |, — 99, R[AO:]| ostimateq ShOUld
scale roughly as A6?.

Figure 3 is an example of how this appears in practice. Along the x—axis, various step sizes Alogd
are used to estimate Oipgqh. The y—axis shows the fractional difference in computed derivative when a
given Alogd is used compared to 4Alogd. From right to left, the point at which the quadratic form of the
error gives way to the fluctuating form characteristic of machine precision errors, between Alogd = 2 and
3 x1073, is where we expect the most numerically-stable computation of Olog ah. In other words, it is the
smallest value of Alogd that can be used before numerical precision errors come into play, and thus, we
choose a slightly larger value (say, 4 x 1073 in our code).

However, this is only a simple case. In Figure 4, we display the same plot as above, except for computing
Dog 0, h, where Q, = /GM3/a3. For each evaluated frequency, there is some Alog(2, at which the best
numerical stability is attained, but these do not occur at the same step size. So, we cannot chose a step
size for the computation of the derivative which yields an accurate result for all frequencies in our observing
range. The Fisher matrix elements require integrating dg, h over all frequencies in the observing range, so a
single step size for a given parameter, evaluated at all frequencies, may prevent accurate computation of the
inner products within the Fisher matrix. I am now working to determine whether a frequency-dependent
step size for computation of the waveform derivative is necessary, or if some other statistic may show that a
single A#; for all frequencies is sufficient.

One potential option is the waveform mismatch, defined by

M (h1,hs) =1 — O (hy, hy) (25)
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Figure 3: Fractional difference in computed derivative of h for a variety of step sizes Alogd and at three GW frequencies. The
derivative of h when Alogd is used is compared to when 4A logd is used.

where
(h1 | ho)

V(b1 [ ha) (ha [ ha)’

The mismatch is 0 when the waveforms are aligned (specifically, when one is a constant multiple of the
other). In our case, we examine the mismatch between the derivative of the waveform when two different
step sizes are used to calculate Oh. Usually, the step sizes are chosen to be Af; and kAf; where k ~ a few.
A small mismatch in this case indicates that at step size Af;, the derivative is quite stable to a change in the
step size, and thus that the particular choice of A#; is satisfactory (see Fig. 5). The mismatch is computed
through integration over all frequencies, and is therefore a possible method to establishing a sufficient step
size for each parameter in Fisher matrix computations.

O (hy, hs)

(26)

4 Future directions

Given the complicated form of the strain measured by a TianGO-like space-based GW observatory, it is
not surprising that the particular parameter estimation uncertainties, as calculated in the Fisher matrix
approach, can depend heavily on angular parameters which may vary widely from system to system (i.e.,
95,55,55@1, AL, @0, V0, T'). To make this study more general, I plan to average over some subset of these
parameters so to mitigate the effects of the strong angular parameter dependencies. Each parameter averaged
over multiplies the number of Fisher matrices which must be computed, so I will have to be judicious in
choosing the most important candidate parameters so to avoid excessive computing times.

Finally, I will repeat the Fisher analysis to examine how our measurements of other parameters vary as
the eccentricity of the outer orbit changes. At a basic level, I expect that the expanded range of Doppler
phase shifts and faster de Sitter precession will lead to improved parameter estimation precession across all
parameters, but again, the measured strain waveform is quite complicated, and this expectation may not
hold uniformly.
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Figure 4: Fractional difference in computed derivative of h for a variety of step sizes Alog (2, and at three GW frequencies.
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