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What is the SGWB?

Continuous source

of random multiple unresolved sources

arger range of/where signals can come 4»‘




What types of Signals can be in the SGWB
e Remnants of the early universe %@&% ' |
f ‘ ' ‘.“"

e Compact Binary Coalescence CBCs

e Astrophysical sources (ow redshift)

e Cosmological sources (igh redshitty 8




The current state of SWGB research

Figure reproduced from [2]. We show the binary black hole’s background with various chirp masses with the
Fiducial model for SGWB (colored lines). Power-law integrated curves for one year with Advanced LIGO (grey lines).

Current sensitivity works well
to define the SGWB with

Q

power-law models. L

| t

QGW (f) = QGW ( fref )( f/ fref)cx

Qg (F) = GW energy density

1/pc* dpg,(f)/dInf
F = reference frequency
o} = spectral index of the signal

%5 in our case



What we want to do....
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Current sensitivity works well
to define the SGWB with
power-law models.

As |sensitivity increases|the

predicted smooth turnover |will

be detected and will need a
new model to describe it.



Proposed method : interpolation with varying # of knots

= signal only
«  model evaluated at data points m(x;)

noise + signal

No knots = only noise
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Proposed method : interpolation with varying # of knots

No knots = only noise Too many Knots
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What we want to do...

A GENERAL & GENERIC = Describe all
MODEL non-power laws

Interpolation
Model

Westley:
e Generic fitting of injected signals with certain
frequencies (or Knots) *WESTLEY*
e Gives the parameters to run an rjmecmc
o lterations, proposals

Reverse Jump Markov Chain Monte Carlo (RJMCMC)

e Proposes knots deaths, births, and moves
e Allows to the number of knots to vary »»» number of parameters vary

pygwb + pygwb_pipe bilby
(Hybrid analysis) : Frequentist & Bayesian statistics Bayesian statistics 9




Our Statistics method

e Current models use Signal to Noise ratio (SNR) and Bayes Factor(BF)
o Where C is the data and o is standard deviation of the noise.

SNR Cror B = P(Z“\(f)lsignal)

s )

ToT o, P(C (f)|noise)

e Our model has a new proposed Bayes factor method
o  With the MCMC there are given number of Knots (control point) and establishes Births
turned on) and Deaths (turned off) to best fit the data
o Aknot is turned on when our model includes a signal
m A sample with no knots means our model includes only noise

N

=1

Our Method N0
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A closer look at our Bayes factor method...

From the first practices on westley
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Count of runs that were
only noise
1

* If curious : our log BF for this run was = 1.3



Explaining

and

SNR
NA
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Bayes Factor
s P(C|8)P(8
P(6|C) = (1')(%)( )
- P(C|0)P(0
Porcy - e

P(C|signal) = [ d6 P(C|8)P(0)
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How westley changed this summer

1.

Contains methods to inject simple power-law, broken power-law, and CBC

signal.

a. Parameters: Omega_ref, f when the power-law breaks), iterations of jmcmc

knee (

Now takes data in the frequency domain.

a. Faster- doesn’t have to run pygwb every time.

P (P,(f) 3H . ,
T e error to simulate data. Script named after

*CHARLIE*
Made a script that runs the generic fitting 107 with different amplitudes, Qaw -

b. Uses &*(f) ~— — :
) = Y, (NS, ()

Runs jobs on condor in parallel, cut run time significantly!

(K



Performance with 04 data
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Injected power law :

e

Q =
fre 74

GW QGW(fref

Injected Broken Power Law :

Q (F/f. )" forf < f
eak eak eak.

Q., =g ° S !
’ Q /) forf < f

peak peak.

Injected Realistic CBC signal:

(From Taylor’s project!)

(8 60 i
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Performance

Simple Power Law
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Westley: Taylor's Signal
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CBC signal
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Signal vs. Noise
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SNR? and In(BF) increase linearly. Yay!!

We would see this type of signal in ~10 years

For O4, there is not enough time to see a difference in power law and broken
power law

17



Key points

SGWB are persistent therefore always present.

o  Containing CBC, information of the early universe, astrophysical and cosmological sources.

Once sensitivity in detectors increase current models will run into issues to
describe signals analytically .

We want a generic and general model that will detect all non-power laws.
Our generic fitter westley passed its tests with simple and broken power
laws.

westley can detect CBC signals, shown from using Taylor’s signal.
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Thank you !
Any Questions?



