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The Stochastic Gravitational Wave Background (SGWB) is the combination of assumed isotropic,
stationary, unpolarized, and Gaussian sources of gravitational waves. We expect a large contribution
of neutron star and black hole binaries to this unresolved signal. Current LIGO detectors are not
sensitive enough to the SGWB strain regime but we anticipate future observing runs to have the
required sensitivity for the SGWB. The promise of future detectors registering the SGWB requires
the introduction of detection and fitting algorithms to understand future observation results. A
Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm permits us to probe the fitting
parameters for SGWB signals via spline and power law fittings. The versatility of the RJMCMC
can be applied to the astrophysical case of recovering the energy density spectra based on injected
mass distributions and merger rates for binary black hole mergers (BBHs). Accurately fitting the
SGWB profiles and parametrizing profiles via spline and broken power laws will aid in identifying
various components of the SGWB in data from upcoming LIGO observing runs.

I. INTRODUCTION

Gravitational waves are perturbations of the space-
time manifold expressed by metric tensor gµν [11]. We
are able to detect these fluctuations of space and time
as strain, or change in length per unit length. This
strain is detected by ground-based interferometers; two
of such detectors are LIGO Hanford Observatory (LHO)
and LIGO Livingston Observatory (LLO). This style of
interferometer involves a laser split in two orthogonal di-
rections and then recombined. These beams reflect off
mirrors and coherently return to the source. When a
gravitational wave passes, it strains the arms of the de-
tector. This causes the light beams to move out of phase
with one another, and so when the beams are recom-
bined the resulting change in the interference pattern is
evidence of a passing perturbation of spacetime.

Four primary sources of gravitational waves are coa-
lescing binary systems, pulsars, supernovae, and stochas-
tic gravitational wave backgrounds (SGWB) [3]. We
know that coalescing binary systems appear as "chirps".
These chirps are the only signals we have detected so
far. Pulsars should appear as sine waves due to their pe-
riodic emission of gravitational waves. Supernovae are
extremely challenging sources to understand since we
have yet to detect them, and parametrizing their signal
in order to include them in matched filtering searches
is extremely unlikely. The fourth source, SGWBs, en-
compasses the unresolved gravitational wave sources.
These unresolved sources include, for example, fluctua-
tions from just after the Big Bang, as well as unresolved
astrophysical sources like compact binary coalescences.
"Stochastic" refers to a non-deterministic strain signal,
either due to the generation process or detector limita-
tions. We cross-correlate data from different detectors to
try to detect the SGWB.

Understanding the SGWB will help researchers probe

the Universe earlier than electromagnetic signals cur-
rently allow [3]. Electromagnetic signals go back to about
400,000 years after the Big Bang, when scattering of par-
ticles decreased enough for photons to travel unimpeded.
The SGWB could take us as far as 10−32 s after the Big
Bang because GWs propagate through spacetime without
the risk of scattering off particles [12]. For comparison,
Planck Time is 5.39× 10−44 s after the Big Bang. Thus,
resolving the primordial background could help paint a
clearer picture of the early Universe [11].

Determining a better and more general fit for the
SGWB signal will also help us learn about the back-
ground itself [3]. As we add more time to our background
detection survey, we will be able to resolve more fea-
tures in the SGWB spectrum. The features in the SGWB
spectrum will help us learn about the signals beyond the
recognizable, precise events. As Allen [3] mentions, the
more we record the signals on multiple detectors simul-
taneously, the better we will be able to transition the
sources of the SGWB from "unresolved" to "resolved",
allowing us to understand the astrophysical implications
of the parameters we measure and constrain.

Additionally, developing better fits will help bound the
stochastic background signal. Narrowing down the fre-
quency ranges where the SGWB signal is present will be
helpful to deduce the components of this signal [14]. By
fitting parameters to the models we develop during this
project, we may be able to better constrain where to turn
our attention in our GW searches. Since GW detection
is a relatively new scientific development, interpreting as
much of the data as we have now will only help us better
understand what makes up the SGWB.

Another important application of developing generic
fits is recovering parameter profiles given an Ω(f) energy
spectrum. For example, fitting the contributing binary
black hole (BBH) merger density rate given the energy
profile will help recover specifics about the Universe given
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FIG. 1. Various GWB sources, their sensitivity, and their
energy density. Figure from Ref [11].

a detected GWB energy background in future observing
runs. I will discuss more specifics of this method later in
this report, but the astrpohysical ramifications of devel-
oping a general fit for SGWB are many and interesting.

II. BACKGROUND

A. SGWB

Most models for a GWB predict a power-law spectrum,
which is given by:

ΩGW(f) = Ωref

(
f

fref

)α

, (1)

where ΩGW(f) is the energy density per logarithmic fre-
quency interval used to describe the isotropic stochas-
tic background. This quantity can also be expressed as
ΩGW(f) = f

ρc

dρGW

df where ρc is the critical density and
ρGW is energy density of gravitational waves in the in-
finitesimal frequency interval f to f + df [3]. Fig. 1
provides a visualization for the energy densities expected
from different sources across the frequency interval [11].
Ωref is the the amplitude at a reference frequency, fref .
α is the spectral index. Both Ωref and α are constrained
using strain data. Right now, we can fit various param-
eter combinations for different frequency ranges of our
spectrum [8].

B. Proposed Fittings

Current alternative functional fittings for the SGWB
are as follows:

• Power Law: ΩGW(f) = Ωref

(
f

fpeak

)α

• Broken Power law (BPL):

ΩGW(f) =

{
Ωpeak(

f
fpeak

)α1 for f ≤ fpeak

Ωpeak(
f

fpeak
)α2 for f > fpeak

• Smooth BPL:
ΩGW(f) = Ωpeak(

f
fpeak

)α1 [1 + ( f
fpeak

)∆](α2−α1)/∆

These models, although simplistic and described by
few parameters which require fitting, are not as general
and generic as we would like [9]. Alternative functional
approaches include spline fitting. Spline fitting utilizes
smooth, piece-wise polynomials of different degrees to
describe a curve. Parameters come in the form of co-
efficients of a polynomial expansion:

pj(x) = a0 + a1x+ a2x
2 + ...+ anx

n (2)

such that the ai coefficients allow us to fit an n-degree
polynomial to the curve segment j. This is advantageous
where a single polynomial fit, such as attempting to use
a single power law for the entire spectrum, fails. We
will start with spline fitting to recover these parameters
and their relationships to each other when constructing
functional models for our data. In our SGWB analysis,
we only require spline fit interpolations up to n = 3.

C. RJMCMC Westley Fitting Algorithm

The Westley fitting algorithm utilizes a combination of
single power laws and splines to interpolate a fit between
an optimized number of knots. Westley is a Reversible
Jump Metropolis-Hastings Markov Chain Monte Carlo
algorithm [7]. This means that a ratio of likelihoods be-
tween points drives the placement of nodes in either the
spline or power law fits. The term "Reversible Jump"
means that the MCMC can propose adding or remov-
ing parameters from a model instead of just probing the
existing parameters. First, a guess is made for the place-
ment of the set of nodes along a frequency interval. For
now, this guess is made on a uniform prior over the lo-
cal frequency bin. Next we calculate the likelihood of
this node configuration, which is a function of the cross-
correlation between detectors and the model we have in-
jected. We are essentially proposing to move a node,
interpolating between the nodes to calculate the model,
then using that node-motivated model to calculate the
likelihood of the data. We then propose to move the am-
plitude of a node, add another node, or remove a node,
and then calculate the likelihood again. If the likelihood
of the second node configuration is greater than the like-
lihood of the first node placement, the second node is
kept. Otherwise, we throw out the second node configu-
ration and keep the first node configuration. We repeat
this process to form a chain, which should converge at a
particular fit to the data.

D. Relevant Equations

An MCMC parameter probe such as Westley relies on
probability formulations and statistics. In the following
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proposals, a set of equations is used to evaluate the likeli-
hood of the proposal and the Hastings ratio, R. We define
the acceptance probability for a node as:

P (m′|m) = min

(
1,

p(m′)

p(m)

p(d|m′)

p(d|m)

q(m|m′)

q(m′|m)

)
. (3)

p(m) is the prior on model m, and p(d|m) is the likelihood
of the data given model m. Meanwhile, q(m|m′) is the
ratio of probability to move from model m to model m′

and vice versa. The Hastings ratio, R, is embedded into
the acceptance probability and is expressed as:

R =
q(m|m′)

q(m′|m)

p(m′)

p(m)
. (4)

The difference between the acceptance probability and
the Hastings ratio lies in the probability of the data given
the various models that are multiplied into the accep-
tance probability.

For now, the Hastings ratios are consistently 1. How-
ever, in future Gaussian-based updates to the proposals,
R will be more complicated, including a Gaussian expo-
nential term. Future work will be deriving and imple-
menting that expression.

E. BBH Energy Spectra in SGWB

We can use Westley to fit a GWB background, but
we can also use it to fit population or distributions that
contribute to the ΩGW spectrum. This is one of the ben-
efits of developing a generic fitting algorithm. In this
section, we introduce the theory behind the BBH energy
density spectrum, and discuss how we can use Westley
to constrain useful information about the population and
distribution of BBHs.

The energy density spectrum for BBH populations
given specific populations per redshift and mass prob-
ability is:

Ω(f) =
f

ρc

∫
dz

R(z)⟨dEdf |f(1+z)⟩
(1 + z)H(z)

. (5)

H(z) is the Hubble constant as a function of redshift. The
(1 + z) factor in the denominator of the integral incor-
porates in the time delay of detecting redshifted objects.
The population-averaged energy spectrum with respect
to a BBH with object masses m1 and m2 is

⟨dE
df

|f(1+z)⟩ =
∫

dm1dm2
dE

df
(m1,m2; f(1+z))p(m1,m2)

(6)
and the merger rate density is:

R(z) =

∫
dtdR∗(zf (z, td))F (Z ≤ Zc, zf (z, td))p(td),

(7)
where td is the time delay [1]. F (Z) is a function describ-

ing the metallicity weighting of the star formation rate,
R∗(zf ). TO gain intuition of the metallicity impact on
the BBH merger rate, suppose td is given a value for the
time delayed between detected formation and formation.
Then, the overall BBH R(z) will follow R∗ with addi-
tional weighting by the metallicity at a given redshift.
We weight the star formation rate by the metallicity to
inform the model that black holes are more likely to form
in low metallicity environments.

To avoid computing a 4D integral, we utilize a matrix
multiplication approximation presented by Tom Callis-
ter [5]. The computation of this integral occurs in two
phases: the precomputation of a grid of mass and redshift
values, followed by the calculation of the merger rate den-
sity as a function of redshift, z, and time delays, td. We
may rewrite the population-averaged energy spectrum as
a convolution of the radiated energy at every combina-
tion of masses, source redshifts and frequencies with the
probabilities over the mass grid:{

⟨dE
df

⟩
}

f,z

=
∑

m1,m2

{
dE

df

}
m1,m2,f,z

{p}m1,m2
. (8)

The merger rate density becomes a grid of merger red-
shifts and time delays. The grid of formation redshifts is
given as {zf}z,td . We distinguish between the source and
detected reshifts and times due to the time delay of the
CBC information reaching our detectors. We addition-
ally utilize the star formation rate, {R∗}z,td , a function
we assume the merger rate follows. Finally, we combine
these matrices with metallicity weights, {F}z,td , repre-
senting the CBC formation as a function of redshift and
time. The final expression for the merger rate density
becomes:

{R}z =
∑
td

({R∗}z,td × {F}z,td){p}td . (9)

Using these matrix multiplication approximations, in-
stead of eqn. 5, we write:

Ω(f) =
∑
z

{
R(z)

(1 + z)H(z)

}
z

{
⟨dE
df

⟩
}

f,z

. (10)

The independence of the two terms within the sum
allows us to manipulate the merger rate density and
energy spectrum independent of each other. In the next
section, I will introduce how the various models for R(z)
and p(m) affect the Ω(f) spectrum.

III. METHODS

A. Mass Probability and Merger Rate Models

Utilizing the matrix multiplication form of Ω(f) pre-
sented by Tom Callister, we may manipulate parame-
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FIG. 2. Mass probability profiles. The assumed mass proba-
bility for varied R(z) is the third profile, power law + peak.
The profile gives the probability of having a merger with each
respective mass, independent of redshift. Figure from Ref. [2]

ters and models of the mass probability distribution and
merger rate density. The mass probability distributions
predominantly follow those in Abbott, et. al (2021).
These four approximate mass probability forms (trun-
cated, broken power law, power law + peak, multi peak)
are shown in fig. 3. We will default to the power law +
peak profile when varying the merger density rate. The
exact model and parameter posteriors that I utilize in my
code analysis are also in Abbott, et. al (2021) [2]. For
concision, I include the reference but not the extensive
parameter posterior figures or tables.

The merger density rate is another story. This profile
is assumed to follow the star formation rate relatively
closely, as previously described. One common form of
the merger rate density that is used, because it is a good
analytic description of estimates of the star formation
rate, is given by [15]:

RBBH(z) = C(λ1, λ2, zpeak)
R0(1 + z)λ1

1 +
(

(1+z)
(1+zpeak)

)λ1+λ2
, (11)

where C(λ1, λ2, zpeak) is the normalization constant al-
lowing RBBH(0) = R0, R0 = 31.88 Gpc−3yr−1 is the
local merger density rate [13], zpeak is the location of the
highest merge rate density in redshift space, λ1 is the
power law index up until zpeak, and λ2 is the power law
index after zpeak. Based on the initial value condition,
we may manipulate λ1, λ2, and zpeak for effect on Ω(f).

IV. RESULTS & DISCUSSION

A. Parameter Variation

The first step of exploring the relationship between
R(z) and Ω(f) is to vary the parameters of the merger
density rate (eqn. 11) and map the effects onto Ω(f).
Increasing zpeak alone results in much greater energy at
low frequencies, as shown in Fig. 4. We expect this,
since increasing zpeak alone also increases the area under
the R(z) curve, implying more overall mergers which is
effectively proportional to the amount of energy present.
However, if we vary the location of the peak while at-
tempting to conserve the area beneath R(z) as best as
possible, we see a different energy density increase effect.

FIG. 3. Variance of only the zpeak parameter in R(z), leaving
the spectral indices constant. The left plot shows the merger
density rate profile for each zpeak. The right plot shows the
corresponding Ω(f) for each varied R(z).

Whereas the shift of z alone caused the entire low fre-
quency energy density to increase, horizontally shifting
the peak location, as shown in fig. 5, induces an energy
density increase at the turnover in the BPL energy den-
sity spectrum. This effect agrees with less low-redshift
mergers for higher zpeak, since those closer BBHs con-
tribute greater to the energy density than high-redshift
mergers.

Variation of spectral indices, λ1 and λ2, only changes
the low frequency energy density before the turnover.
This makes sense, since increasing the number of low-
redshift BBHs adds energy to the system. In fig. 6, the
increase of λ2 reduces the energy density at low frequen-
cies. This is because cutting off high-redshift mergers and
compressing the R(z) function at low redshifts reduces
the overall BBHs allowed in the system, therefore low-
ering the total energy. Varying the parameters of R(z)
within a reasonable range is a good way for building in-
tuition of the effects of changing the BBH population
concentrations at various redshifts on Ω(f).

B. Pop I/II v. Pop III BBH Spectra

An interesting application of separating and varying
merger density rates and mass probabilities is probing
the energy density contributions from Pop I/II and Pop
III BBHs. There is no formal distinction between Pop
I/II and Pop III BBHs, so we assume the general red-
shift division utilized for Pop I/II v. Pop III stars [10].
To simulate this in our energy density spectrum calcu-
lations, we add a Gaussian peak of high merger rate at
high redshifts, as if there were a nonnegligible number of
BBH mergers at high redshift. We identify this peak in
fig. 7. Since we cannot evaluate the Pop I/II and Pop
III individually, we evaluate the energy density spectra
of the R(z) with and without the Gaussian peak. The re-
sulting energy density spectrum is shown in fig. 7. Even
for a supposed high number of high redshift mergers cor-
responding to Pop III BBHs, there is still little energy
contributed to the GWB from them. The Gaussian peak
injected into the merger density rate is exaggerated to
induce a noticeable effect on the composite energy den-
sity spectrum. As shown in fig. 7, the only nonnegligible
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FIG. 4. Horizontal shifting of zpeak with corresponding changes in spectral indices λ1 and λ2. The left plot shows the merger
density rate profile for each zpeak. The right plot shows the corresponding Ω(f) for each varied R(z).

FIG. 5. Variance of only the λ2 or β parameter in R(z),
leaving the spectral indices constant. The left plot shows the
merger density rate profile for each λ2. The right plot shows
the corresponding Ω(f) for each varied R(z).

FIG. 6. Plots conveying the Pop I/II BBHs v. Pop III BBHs.
The left plot shows the merger density rate with an injected
high density of BBHs at high redshift. This Gaussian injection
represents an overdensity of Pop III BBHs to observe effects
on the energy density spectrum. The right plot shows the very
small energy density contribution of Pop III BBHs. Visible
energy density spikes in higher frequencies are likely numerical
noise.

contribution from Pop III BBHs is at low frequencies.
Spikes at higher frequencies are an artifact of numeri-
cal noise. Potentially by incorporating a separate mass
probability distribution as a result of varying metallicity
at high redshift, this profile can be resolved.

C. Strong Lensing Merger Rate

An alternative merger density rate to compare to the
form in eqn. 11 is the strong lensing-backed profile [4]:

R(z)lens = N × S(z)×M(z). (12)

N ≈ 6 × 103 Gpc−3yr−1 is the normalization constant.
S(Z), the star formation rate, is given as:

S(z) =
(1 + z)2.7

1 + ((1 + z)/2.9)5.6
(13)

which has visible analog to the parametrized RBBH(z)
in eqn. 11. M(z) is the modulation function defined as:

M(z < 2) =
2× 10−4

0.1 + z1.9
+ e−|T (z)−Tmax|/Te . (14)

For M(z ≥ 2), the modulation function is 1. Lookback
time is

T (z) =
2

3H0
(1 + z)−1.5 (15)

with Tmax = T (z = 2) and estimated parameter Te = 0.8
Gyr. Fig. 8 shows this profile as a function of time. The
strong lensing model is driven by the desire to justify
so many massive BBHs at redshifts 1 < z < 5. Gravi-
tational lensing from galaxy clusters and massive inter-
galactic areas induce lensing on the GWB, magnifying
chirp masses. This derived R(z)lens takes into account
this lensing to give a different picture of BBH merger
density throughout the Universe.

Utilizing this merger rate density profile instead of the
one in eqn. 11 yields an energy density spectrum of mag-
nitude detectable by current observing runs. Strangely,
we do not see any artifacts of this profile in our simula-
tions or data. We may vary with some of the parameters



6

in R(z)lens to attempt to arrive at a closer profile to our
SFR-informed merger rate densities. The Te parameter
controls the changeover from low-z to high-z rates, or
when the strong lensing effects on GWB becomes signifi-
cant. While reducing Te is helpful for reducing Ωlens(f),
playing with other parameters in the modulation function
will be necessary to fully reduce this lensing-informed
profile to the expected magnitudes.

FIG. 7. Strong gravitational lensing informed merger density
rate and corresponding Ω(f) from analysis in Tom Callister’s
code. Left Fig. from Ref. [4]

V. NEXT STEPS

The next step of this project should take up the re-
mainder of my time in the LIGO SURF. I plan to use
the Westley RJMCMC code to see what profiles and pa-
rameters can be recovered from a given Ω(f). Instead of
placing the knots for the spline fitting in the data space,
Ω(f), I will place them in the R(z) space. I will use
Tom Callister’s code as the model evaluator to see how
closely I can fit a merger density rate to the given energy

spectrum. That being said, it will be interesting to see
what the fitter believes the R(z) functional form to be.
After blind testing, I will hopefully be able to constrain
the R(z) to specific forms to recover parameters from
the SFR and strong-lensing informed models. It would
be very interesting to be able to recover a model such as
R(z) just given the energy spectrum, which we are able
to attain from LIGO observation.

The next step will be to run everything I have run so far
with verified constants and parameters, as well as noting
the error bars. I have learned so far that ensuring the
code and models work is the first step before evaluating
the envelope of fits that work for my given model. While
I work to use the RJMCMC to recover various merger
density rates, I will add in error bars from posteriors.

Overall, it’s very exciting to see the application of the
Westley RJMCMC to recovering profiles and parameters,
which will hopefully help us better understand and ex-
trapolate from the LIGO interferometer data we recieve
in future runs.
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