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Abstract

As we look ahead to LIGO, Virgo and KAGRA (LVK)’s next observational run (O4) and
future gravitational wave observatories such as Cosmic Explorer, understanding the sensitivity of
a detector network to compact binary coalescences (CBCs) is important for estimating the merger
rate density. The parameter space of CBCs is composed of many parameters, which are used to
characterize the binary systems. In this work, we explore how the network sensitivity (space-time
sensitive hypervolume) changes according to changes in the CBC population parameter space.
Using Monte Carlo simulations, we calculate the averaged space-time sensitive hypervolume for
different parameter configurations, marginalizing over subsets of the parameter space so that we
can compare them.

1 Introduction

1.1 Gravitational Waves (GW)

Gravitational Waves are ripples of space-time
caused by massive accelerating objects. When
two Black Holes or Neutron Stars orbit each
other, they radiate energy in form of GWs un-
til they merge. In 2015, LIGO made its first di-
rect detection of gravitational waves, GW150914
[1]. Since then GW signals from mergers of Bi-
nary black holes (BBHs) and Neutron stars (NSs)
have been detected. The third LVK Collaboration
Gravitational-Wave Transient Catalog (GWTC-
3) contains 90 GW signals from CBCs observed

thorugh the first three observing runs of LIGO-
Virgo [2].
The space-time distortions caused by gravitational
waves are transverse to direction of propagation.
Each LIGO detector is a Michelson interferome-
ter with 4km arms. Each arm has a Fabry-Perot
resonant cavity that allows to measure the change
in the length of the arms [3]. This difference is
used to calculate the strain, which is defined as

h = ∆L/L. (1)

The strain (h) can also be described as:

h = h+F+ + h×F× (2)
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where plus and cross represents the polarizations,
and F+ and F× represent the detector antenna
response as a function of the right ascension, dec-
lination, and polarization angle of the source.

1.2 Overview of the study

The current LIGO [3], Virgo [4] and KAGRA [5]
(LVK) network can not possibly detect all the
compact binary coalescences (CBCs) in the Uni-
verse, but the next generation of detectors, as
Cosmic Explorer (CE), will have sensitivity to
a much larger fraction of CBCs in the Universe.
Therefore, it is important to understand how sen-
sitive the LVK network is for those mergers, both
in the present time, as well as make estimates
for the future. The CBCs can be characterized
by their source parameters, which are divided
into intrinsic parameters: masses (m1,m2) and
spins (Sx1, Sy1, Sz1, Sx2, Sy2, Sz2), and extrinsic
parameters: right ascension (α), declination (δ),
luminosity distance (dL), inclination (θJN ), po-
larization angle (ψ]), time of coalescence (tc), and
phase at coalescence (ϕc) [6].
This work uses the space-time sensitive hyper-
volume ⟨V T ⟩ as the metric to understand the
sensitivity of the LVK network. The goal of this
study is to understand how the ⟨V T ⟩ changes
according to changes in the parameter space pop-
ulation of CBCs and the resulting waveform prop-
erties. The merger rate density can be estimated
from the space-time sensitive hypervolume and
the the number of detected signals obtained from
LVK’s observational runs. Therefore, understand-
ing the detector network sensitivity to Gravita-
tional Waves (GW) from CBCs will lead to more
information about the cosmic population.
This project will use available computational tools
such as PyCBC[7] and Bilby [8] to generate CBC
populations and the waveforms produced from the
mergers. By using Monte Carlo simulations, it will
calculate the dependence of the space-time sen-
sitive hypervolume on selected parameters. The
probability of detections are determined using the
predicted network signal-to-noise ratio (SNR) of
the injected signal.

1.3 Signal-to-noise ratio (SNR)
The general noise-weighted inner product is used
to determine the probability of detection of a
signal from a CBC. The SNR is calculated using
the inner product:

⟨a|b⟩ = 4
∫ fmax

fmin

ã∗(f)b̃(f)
Sn(f) df (3)

where Sn is the Power spectral density (PSD) of
each detector. The SNR (ρ) is defined as:

ρ = ⟨d|h⟩√
⟨h|h⟩

(4)

where
d = h′ + n (5)

where h′ is the injected waveform and n is the
noise. In special, we are mostly interested in the
optimal SNR, defined as:

ρ2
opt = ⟨h|h⟩ (6)

For ρopt, the same waveform is used for injection
and recovery. The optimal SNR assumes that
the template waveform h is exactly equal to the
signal in the data h′ (up to an overall multiplica-
tive scale). In Section 3, we are going to conduct
one study using a different injected and recovery
waveform, for which we are going to use Eq. 3.
The SNR is calculated for each detector, and the
optimal network SNR can be calculated as the
square root of each individual SNR squared:

ρ2 =
∑

network

ρ2
i (7)

The probability of the detection is determined by
the SNR, and we designate anything above our
threshold of 10 as detected.

1.4 Merger rate density
Estimating the merger rate density is important
to understanding the cosmic population. The
mean number of detected signals of astrophysical
origin Λ1 above the chosen threshold, is related
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to R̂, the rate density (events per unit time per
comoving volume) of binary coalescenses, by [9]:

R̂ = Λ1

⟨V T ⟩
(8)

where ⟨V T ⟩ is the averaged space-time sensitive
hypervolume.

1.5 Space-time sensitive hypervol-
ume ⟨V T ⟩

The ⟨V T ⟩ is the metric used to define how well
the detectors can observe a given configuration of
CBCs, and is the main topic of this study. The
⟨V T ⟩ is defined as:

⟨V T ⟩ =
∫
dVc

dz

dtsrc

dt⊕
dt⊕dz

∫
π(θ)pdet(θ, z)dθ

= V0

∫
π(z)dt⊕dz

∫
π(θ)pdet(θ, z)dθ

≈ V0T

N

N∑
k∼π(θ,z)

pdet(k)

(9)
where tsrc is the source time, t⊕ is the detector
time, z is the redshift, and Vc is the comoving vol-
ume. The V0 is the factor that takes into account
the cosmological effects. The integral is trans-
formed in a sum in the last line, so that we can do
a Monte Carlo simulation. We are sampling over
the probability distribution of the parameters, θ
represents the intrinsic and extrinsic parameters,
excluding the luminosity distance (dl), and pdet

is the probability of detection of the signal, based
on the SNR.

2 Methodology

To carry out the Monte Carlo integration it is nec-
essary to generate populations of CBCs waveforms
(π(θ, z)) to numerically solve for the space-time
sensitive hypervolume. Those populations can be
fixed over some parameter, for example, popula-
tions where all the Binary Black Holes have the
same mass, or they can be over some distribution.

2.1 Generating BBH mergers wave-
forms

To generate waveforms, this project uses Py-
CBC waveform model families [7]. Specifically,
IMRPhenomXP and IMRPhenomXPHM[10, 11]
which is a model in the frequency-domain for the
gravitational-wave signal in the precessing frame,
to simulate the merger of BBHs.

Figure 1. An example of a simulated waveform
in time domain. The waveform was generated
for black holes of 35 M⊙, at a distance of 1 Mpc,
using the IMRPhenomXP approximant. The
waveform is tapered to zero at frequencies below
20 Hz because of computational costs.

PyCBC has methods that generate waveforms
in the time and frequency domains. The methods
to generate those waveforms receives as input an
waveform model, and the following parameters:
masses, spins, inclination, phase at coalescence,
and luminosity distance. The methods will re-
turn the components of Eq. 2, allowing for the
calculation of the strain.

3



Figure 2. An example of a simulated waveform in
frequency domain. The blue line is the waveform
simulated for a black hole merger of equal masses
(m1 = m2 = 35M⊙), at a distance of 1 Mpc. The
orange line is the noise of the detector for O3 in

the Hanford detector.

2.2 Generating populations
In this project, the generation of the CBC pop-
ulation (π(θ, z)) is carried in three steps, which
are designed to speed up the generation of the
waveform population. In each of those steps, the
parameters are generated according to probabil-
ity distributions, using Bilby priors[12, 8]. The
first step is drawing the parameters necessary to
generate the waveforms: masses (m1,m2), spins
components (Sx1, Sy1, Sz1, Sx2, Sy2, Sz2), inclina-
tion (θJN ), and phase at coalescence (ϕc). For
each of those configurations, the waveforms are
generated at a fixed luminosity distance (dL) of 1
Mpc.

Figure 3. Flowchart showing the pipeline used by SIFCE [13] to generate a population and calculate
SNRs.
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The second step is drawing the sky parameters
(right ascension (α), declination (δ), and polariza-
tion (ψ) from the prior probability distribution.
The sky parameters are used to calculate the
detector antenna response, as shown in Eq. 2.
For each waveform generated in the first step, a
N number of sky configurations are drawn, and
the corresponding SNR is calculated.

Figure 4. SNR for 100 binary black hole mergers
of equal masses (m1 = m2 = 35M⊙), for different
luminosity distances, in logarithm scale. All the
other parameters were kept fixed.

The last step is scaling the SNR according
to an established number of luminosity distances
(dl). That is possible because, as shown in Figure
3, there is a relationship between the SNR and
the luminosity distance (SNR∝ 1/dL). Therefore,
a number of luminosity distances are drawn from
probability distributions for each of the SNRs
calculated in the second step. Then, they are
scaled accordingly. The scaling of the SNR using
the luminosity distance is a desired operation be-
cause it is computationally faster than generating
a new waveform for each distance. However, it is
important to note that the masses are generated
drawing from p(θ⃗det), and mass is degenerate with
redshift:

mdet = (1 + z)msource (10)

Therefore, it is necessary to account for this in the
calculation, especially because if we just correct
the masses to the correct frame, then the masses
of population is not going to follow the mass prob-
ability density consistently across redshift. This

can be done by drawing the redshift population
from a conditional probability distribution:

p(z|mdet) = p(z)p(msrc)
(1 + z)p(mdet)

(11)

It was not possible to conclude the implementa-
tion of the correction over the 10-weeks, so the
experiments described in this report did not use
the luminosity distance scaling.

3 Results

3.1 Calculating the variance of the
space-time sensitive hypervol-
ume

As this study uses Monte Carlo simulations to
numerically solve for the space-time sensitive hy-
pervolume, it is important to understand how
precise the estimations are and how it varies with
the size of the population. Therefore, it is nec-
essary to study the variance of the estimated
space-time sensitive hypervolume. For this, we
varied the number of intrinsic parameters (N):
100, 500, 1000, 5000, and 1000. For each of the
N, the ⟨V T ⟩ was calculated a 1000 times using
the bootstrapping method, and histograms were
produced to evaluate how precise those results
are.

The events were averaged over sky locations,
and the population has its source mass of the
primary black hole (m1) drawn from a truncated
Gaussian distribution around (35M⊙), with a min-
imum mass of 25M⊙ and a maximum of 35M⊙
The spins components of the binary stars are
drawn from an uniform distribution.

N mean⟨V T ⟩
(Gpc3yr)

σ (Gpc3yr)

100 0.2104 0.0158
500 0.2097 0.0066
1000 0.2095 0.0048
5000 0.2095 0.0021
10000 0.2094 0.0015

Table 1. The mean ⟨V T ⟩ and its respective stan-
dard deviations calculated for each number N.
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As expected, the results are a Gaussian, and
the standard deviation scales proportionally to
1/

√
N . For computations, it is always going to

be an exchange between precision and run time,
as it is possible to use the pipeline for different
number of intrinsic parameters depending on the
desired precision, but increasing the number of
intrinsic parameters increases the run time.

Figure 5. The space-time sensitive hypervolume
distribution, computed over different number of
intrinsic parameters.

3.2 ⟨V T ⟩ and the spin z component

The second study performed was to determine
how the space-time sensitive hypervolume ⟨V T ⟩
changes according to changes in the aligned spin
component. For this, six runs were performed,
and for each run the population was drawn from
almost the same probability distributions. The
only parameter that changed was the aligned spin
z of both black holes in the binary system. As for
the other parameters, the masses of both black
holes (m1 and m2) are drawn from a log normal
distribution around log(35M⊙), and the x and y
spins components are set to zero. The computa-
tion is averaged over sky positions.

Figure 6. The space-time sensitive hypervolume
calculated for different spin z components. The
error bars are smaller than the size of the marker
so they can not be seen in this plot.

In Figure 6, it is possible to observe that the
⟨V T ⟩ increases with increasing spin. This is ex-
actly what we expected, as the hangup effect
predicts that the increase in the aligned spin will
increase the length of the inspiral. This will pro-
duce a higher SNR, therefore a higher ⟨V T ⟩.

3.3 ⟨V T ⟩ and the Higher order
modes

The leading order of higher order mode for the
gravitational waves is l = m = 2. The IMR-
PhenomXP is a family of waveform templates
[14] that incorporates the inspiral, merger and
ring-down stages of the binary black hole coales-
cence. IMRPhenomXP incorporates the dominant
quadrupole spherical harmonic modes, and IMR-
PhenomXPHM incorporates multipoles beyond
the dominant quadrupole in the template wave-
form [10], including (2, 1), (3, 2), (3, 3), and
(4,4).
In this experiment, the objective was to study
how the presence of higher order modes in the
waveform template affects the ⟨V T ⟩. For this,
a population was generated with both IMR-
PhenomXP and IMRPhenomXPHM waveforms
templates. Then, the ⟨V T ⟩ was calculated using
a combination of different injection and recovery
waveforms as shown in Table 1. For this study,
population has its masses (m1 and m2) drawn
from a Delta function distribution around 35M⊙.
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Further, it has a isotropic spin distribution, and
is averaged over sky positions.

Injection Recovery ⟨V T ⟩
Gpc3yr

σ
Gpc3yr

XPHM XPHM 1.8509 0.0094
XP XP 1.8202 0.0096
XPHM XP 1.6886 0.0092

Table 2. The injection and recovery waveforms,
and the corresponding estimated space-time sen-
sitive hypervolume. XPHM represents IMRPhe-
nomXPHM and XP represents IMRPhenomXP.

The ⟨V T ⟩ estimated for the injection and re-
covery using IMRPhenomXPHM, is greater than
the ⟨V T ⟩ estimated for the injection and recov-
ery using IMRPhenomXP. That is exactly what
was expected as the presence of more higher or-
der modes will increase the SNR. For the case
where the injection waveform was generated using
IMRPhenomXPHM and it was recovered with IM-
RPhenomXP, the smallest ⟨V T ⟩ was calculated.
That shows that it’s harder to detect the signals
when the recovery wavefomr template is missing
higher order modes.

4 Conclusion

SIFCE is a pipeline capable of efficiently carrying
out the ⟨V T ⟩ calculation, using methods to speed
up the calculation, allowing for diverse studies
using different population distributions. The ex-
periments conducted produced results that are
compatible with the current studies about gravi-
tational waves.
It is possible to conduct numerous experiments
with the SIFCE pipeline, including the calcula-
tions of the ⟨V T ⟩ for the next generation of detec-
tors, as well as to study the dependence of ⟨V T ⟩
in all parameter space. In the future, we plan to
continue exploring the parameter space, as well
as using more elaborated mass distributions such
as the power law plus peak (described in [15])
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