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Disturbances in the curvature of spacetime from the coalescence of binary black holes can be
probed by the gravitational radiation emitted by these sources and recorded by Advanced LIGO
and Virgo. The merger of such objects allows us to test Einstein’s theory of general relativity in the
regime of strong and highly dynamical gravity - specifically, the newly-formed single black hole rings
down in a series of quasinormal modes, whose frequencies and damping rates are fully predicted by
general relativity. Deriving characteristics from this powerful signal is one of the ways we are able to
familiarize ourselves with such distant and exotic objects. Deviations from predictions may provide
phenomena beyond general relativity that we are not yet familiar with. We propose to study ways
in which this may be revealed in gravitational wave data.
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I. MOTIVATION

Gravitational wave (GW) signals from compact binary
coalescences (CBC) provide crucial information to under-
stand what remains of the remnant black hole (BH) and
allow us to test general relativity (GR) in the regime of
strong and highly dynamical gravity.

Binary neutron stars (BNS), black hole-neutron star
(BHNS), and binary black holes (BBH) are the three
main classes of detectable CBCs from our current
ground-based detectors. Future detectors such as LISA
will allow us to study more types of CBCs. More specif-
ically, we will look at BBH merger events. The data
from BBH mergers come from real events, but are sim-
ulated to better understand our current models and re-
fine our analysis techniques. During a BBH coalescence,
there are 3 stages: the inspiral, merger, and ringdown
(IMR). The remnant of merged BHs is a single perturbed
BH with a GW waveform characterized as a set of com-
plex frequencies and damping times known as quasinor-
mal modes (QNMs), which are unambiguously predicted
by GR. The gravitational radiation from this remnant is
called the ringdown phase [1].

BH ringdown is an effective probe GR in the strong
field, notably the “no-hair theorem” (NHT). Detections
of deviations from GR in the form of violations of NHT
can point to physcis beyong GR. We model the ringdown
to be a linear superposition of damped sinusoids,
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where l and m are represented as the angular modes, n
is the overtone, A is the amplitude of the waveform, τ is
the damping time, and f is the frequency (see FIG. 1).
Compactly, the ringdown is a set of complex frequencies,
ω,

ω = 2πf + i/τ, (2)

determined by the nature of the remnant black hole [2].

The dominant quasinormal mode in GR is recognized
as (220), where l = 2, m = 2, and n = 0. This mode
displays the highest frequency and is the least damped,
which we label as the fundamental (22) mode. Higher or-
der modes (HOMs) of QNMs are the modes with smaller
amplitudes than the dominant (22) mode: (330), . . . ,
(440).

Higher order modes (HOMs) that have a radial mode
n > 0 are referred to as overtones. Overtones are the
QNMs with faster decay rates than n = 0, but also the
highest amplitudes near the waveform peak [3]. In previ-
ous data analysis, the inclusion of overtones was omitted
which led to loss of signal content. That is to say, the
inclusion of overtones is important to extract the param-
eters of the signal more accurately [4] and further the
field of black hole spectroscopy.

The GW ringdown frequencies and damping rate re-
veal the final mass and spin of the merged BH. The fre-
quencies for a Kerr black hole do not depend upon its
dynamical past, but the amplitudes of the ringdown do.
This leads to the discussion of the NHT. The NHT states
that mass and spin are the only two properties of Kerr
BHs in GR. Therefore, they uniquely determine all of the
flmns and τlmns. We can test the NHT with the data col-
lected during previous and future runs of GW detectors
[3].
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FIG. 1. Example of a singular damped sinusoidal QNM. T
is the period, Q is the quality factor, and e−t/τ is the expo-
nential decay. By setting t = τ , we can see the quality factor
will be ∼ 2. When adding multiple QNMs, the equation will
result in a linear superposition of damped sinusoidal oscilla-
tions, as seen in Eqn. 1.

II. APPROACH AND METHODS

Recovering higher order QNMs is a powerful way to
test Einstein’s theory of GR above the dominant mode.
This proves to be more difficult once passing the domi-
nant angular mode, (l = m = 2). We will use real GW
signals from the third LIGO-Virgo observing run (O3),
as well as simulated data. The simulated data will be
analyzed in the time domain.

The framework for this research is based on work done
by Maximiliano Isi and Will Farr, who analyzed ring-
downs not in the frequency domain, but in the time do-
main. However, this approach demands truncating the
GW signal at a specific time, which is difficult to handle
with the usual LIGO-Virgo analysis techniques. Instead,
it calls for special treatment in the time domain, or an
equivalent nontrivial procedure in the frequency domain
[3, 5–8]. We chose to work with the former and use the
RINGDOWN software package [5].

III. RESULTS

Using the RINGDOWN software package, we are
able to produce simulated ringdowns that are consistent
with GR. The simulated ringdown is a ’ringup-ringdown’
where the ringdown is symmetrical to the ringup. This
does not correspond to real astrophysical events that have
been detected. We begin by simulating a noiseless, time-
domain waveform to see how different angular modes and
overtones behave.

For these simulated post-merger events, we are able
to specify the angular modes, l and m, as well as the
overtone, n. In return, we have access to the frequecies
and damping times of different modes and overtones. The
primary noiseless waveforms are simulated to analyze the

behavior of the ringdown oscillations alone.

A. Complex Frequencies and Damping Times

As previously stated, all QNMs have their own distinct
frequencies and damping times that are derived directly
from the mass and spin of the remnant BH. With these
frequencies and damping times, we can plot them against
respective values of χ ranging from 0-1 (see FIGs 3-5).

Analyzing the plots, we can see that as by increasing
multipoles, their frequency and Q factor is climbing. We
can also note that in each leftmost plot, the frequencies
of each overtone are spread at χ = 0 (assuming the Kerr
solution breaks down here). The frequencies and damp-
ing times diverge towards infinity at χ = 1, but never
reach due to the limit of astrophysical BHs.

B. Dominant Mode and Overtones

Starting by plotting the fundamental (220) mode (see
FIG. 2), we are able to understand why this is labeled the
dominant mode. This mode can be more easily recovered
due to how ’loud’ it is compared to subdominant modes.
Berti et al. [9] showed that the ringdown analysis with
only (l = 2,m = 2, n = 0) mode can lose 10% of potential
LIGO events [1]. Since this fundamental mode behaves
just as we expect (by having the highest frequency in
the (22) mode and showing to be the least damped), this
makes it the best recovery target.

When adding overtones, the frequencies and damping
times of the wave decreases (see FIG. 6). Recovering ring-
downs with higher overtones is where the task becomes
more difficult. For us to efficiently be able to recover the
(22) mode and higher overtones, we would need a louder
event or a more sensitive detector.

FIG. 2. Simulated ringdown waveform of the dominant funda-
mental (220) mode. This produced waveform takes multiple
parameter arguments such as mass and spin of the remnant
black hole. Here, I have used the remnant BH of GW150914’s
mass and spin as M = 62M⊙ and χ = 0.67.
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C. Subdominant Modes and Overtones

Simulating the subdominant modes along with their
overtones is imperative to understand how to deconstruct
real waveforms. When we begin recovering these HOMs
in true ringdown data, we will know what to search for
and soon be confident in what and where the best events
are to spot them.

Beginning with the first subdominant angular mode
(l = 3,m = 3, n = 0), we note an increase in frequency
from the dominant fundamental mode (l = 2,m = 2, n =
0). The subdominant mode of (l = m = 3) is consistent
in the decrease in frequency with increasing overtones
(see FIG. 7). We see the same information when sim-
ulating the (l = m = 4) fundamental mode along with
various overtones (see FIG. 8).

D. Next Steps

Beyond simulating the fundamental dominant and fun-
damental subdominant modes along with their respec-
tive overtones to explore the raw ringdown waveform, we

don’t want to just examine the noiseless scenario.

After analyzing the most basic waveform, we plan to
then add Gaussian distributed noise to the simulated
ringdown. By adding noise, it will then be possible to
explore the recovery of HOMs and their overtones in a
more realistic scenario.

Along with noise addition, we will prepare a BBH coa-
lescence IMR waveform. This will allow us to attempt to
fully recover specific HOMs along with their respective
frequencies and damping times.
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FIG. 3. Frequency f22n (left), damping time τ22n (center) and quality factor Q22n = πf22nτ22n (right) for changing l = m = 2
tones, as a function of dimensionless BH spin χ. Times are measured in units of tM ≡ GM/c3 for BH mass M .

FIG. 4. Frequency f33n (left), damping time τ33n (center) and quality factor Q33n = πf33nτ33n (right) for changing l = m = 3
tones, as a function of dimensionless BH spin χ.

FIG. 5. Frequency f44n (left), damping time τ44n (center) and quality factor Q44n = πf44nτ44n (right) for changing l = m = 4
tones, as a function of dimensionless BH spin χ.
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FIG. 6. Simulated ringdown waveform with overtones ranging from 1-4 in addition to the fundamental mode. Here again, using
GW150914 data with M = 62M⊙ and χ = 0.67. We clearly see the higher overtones that are added, the lower their amplitude
becomes. The frequency of the overtones is also diminishing.

FIG. 7. In the (33) mode and its overtones, we notice an increase in frequency from the dominant fundamental (220) mode
(above), but the contracting overtones are still present. (Using the same GW150914 remnant BH parameters as above.)

FIG. 8. Simulated ringup-ringdown waveform that dispalys the same explanations as previous plots. Higher frequency in
fundamental (44) mode than previous (33) fundamental mode. The amplitudes and frequency of the overtones are decreasing
as well.
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