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Disturbances in the curvature of spacetime from the coalescence of binary black holes can be
probed by the gravitational radiation emitted by these sources and recorded by Advanced LIGO
and Virgo. The merger of such objects allows us to test Einstein’s theory of general relativity in the
regime of strong and highly dynamical gravity - specifically, the newly formed black hole rings down
in a series of quasinormal modes, whose frequencies and damping rates are fully predicted by general
relativity. We focus on the ringdown of the remnant black hole, implementing ringdown analysis in
the time domain. We demonstrate the ability to fit and recover higher order modes of the ringdown
within a set of simulated IMR signals. Possible deviations of the frequencies and damping times of
the ringdown may point to new physics beyond general relativity, such as quantum gravity that we
are not yet familiar with.
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I. MOTIVATION

Gravitational wave (GW) signals from compact binary
coalescences (CBC) of binary black holes (BBH) provide
crucial information to understand what remains of the
remnant black hole (BH) and allow us to test general
relativity (GR) in the regime of strong and highly dy-
namical gravity.

GW signals are detected by the Laser Interferometer
Gravitational-wave Observatory (LIGO) [1]. LIGO con-
sists of two detectors that are 3,000 kilometers apart.
LIGO exploits the physical properties of light and of
space itself to detect and understand the origins of GWs
[2].

Binary neutron stars (BNS), black hole-neutron star
(BHNS), and BBHs are the three main classes of de-
tectable CBCs from our current ground-based detectors.
Future detectors such as LISA will allow us to study more
types of CBCs. The data from BBH mergers come from
real events [1], but are simulated to better understand
our current models and refine our analysis techniques.

During a BBH coalescence, there are 3 stages: the
inspiral, merger, and ringdown (IMR). The remnant of
merged BHs is a single perturbed BH with a GW wave-
form characterized as a set of complex frequencies and
damping times known as quasinormal modes (QNMs),
which are unambiguously predicted by GR. The gravita-
tional radiation from this remnant is called the ringdown
phase [3].

BH ringdown is an effective probe of GR in the strong
field, notably the “no-hair theorem” (NHT) [4]. Detec-
tions of deviations from GR in the form of violations of
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NHT can point to physics beyond GR [5]. We model the
ringdown (not to be confused with the "ringdown phase"
of IMR mentioned above) to be a linear superposition of
damped sinusoids,∑

lmn

Almne
−t/τlmnsin(2πflmnt+ ϕlmn), (1)

where l and m index the angular modes, n is the overtone,
A is the amplitude of the waveform, τ is the damping
time, f is the frequency, and ϕ is the phase (see FIG.1).
Compactly, the ringdown is a set of complex frequencies,
ω,

ω = 2πf + i/τ, (2)

determined by the nature of the remnant BH [6].
The dominant quasinormal mode in GR is recognized

as 220, where l = m = 2 and n = 0. This mode displays
the highest frequency and is the least damped, which we
label as the fundamental 22 mode. Higher order modes
(HOMs) of QNMs are the modes with smaller amplitudes
than the dominant 22 mode: 330, . . . , 440.

HOMs that have a radial mode n > 0 are referred
to as overtones. Overtones are the QNMs with faster
damping times than n = 0 [7]. In previous data analysis,
the inclusion of overtones was omitted which led to loss of
signal content. That is to say, the inclusion of overtones is
important to increase the detection SNR and extract the
parameters of the signal more accurately [5] and further
the field of BH spectroscopy.

In GR, the GW ringdown frequencies and damping
times reveal the final mass and spin of the merged BH.
The frequencies for a Kerr BH do not depend upon its
dynamical past, but the amplitudes of the ringdown do.
This leads to the discussion of the NHT. The NHT states
that mass and spin are the only two properties of Kerr
BHs in GR. Therefore, they uniquely determine each
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flmn and τlmn. We can test the NHT with the data col-
lected during previous and future runs of GW detectors
[7].

FIG. 1. Example of a single damped sinusoidal QNM. T is the
period, Q is the quality factor, and e−t/τ is the exponential
decay. By setting t = τ , we can see the quality factor for
the QNM illustrated here will be ∼ 2. When adding multiple
QNMs, the equation will result in a linear superposition of
damped sinusoidal oscillations, as seen in Eqn.1.

II. APPROACH AND METHODS

Recovering higher order QNMs is a powerful way to
test Einstein’s theory of GR. This proves to be more dif-
ficult once passing the dominant angular mode 22. In
this analysis, we will simulate real GW signals in the
time domain. By using the time domain, we can adjust
the start time of the ringdown to produce better results
for recovery of HOMs.

The framework for this research is based on work done
by Maximiliano Isi and Will Farr [8], who analyzed ring-
downs not in the frequency domain, but in the time do-
main. However, this approach demands truncating the
GW signal at a specific time, which is difficult to handle
with the usual LIGO-Virgo analysis techniques. Instead,
it calls for special treatment in the time domain, or an
equivalent nontrivial procedure in the frequency domain
[7–11]. We chose to work with the former and use the
RINGDOWN software package [8, 12].

A. QNM Properties

Before getting into the recovery of HOMs from BBH
coalescences, we first need to understand how HOMs and
overtones behave. This way, we can be confident in our
understanding when we analyze them in the ringdown.

Referencing to a paper by Isi and Farr [8], we start by
recreating a plot for dimensionless frequencies, dimen-
sionless damping times, and quality factor as a function
of dimensionless BH spin. The frequencies and damping

times are dimensionless due to the variable tM , a time
constant associated with BH mass and is expressed as,

tM =
GM

c3
(3)

where G is the gravitational constant, M is the mass, and
c is the speed of light. Instead of focusing on the dom-
inant 22 mode, we dive deeper into other subdominant
modes (see FIGs.2-4).

One major point to make is when increasing the angu-
lar modes, the frequency increases. The overtones of each
mode all reveal the zeroth overtone to be the most dom-
inant, with the greatest values for frequencies, damping
times, and quality factor. The other overtones fall be-
neath the threshold of the zeroth overtone’s value. The
damping times and quality factor don’t seem to change
significantly, but there is a small change between modes.

1. Complex Frequencies and Damping Times

As previously stated, all QNMs have their own distinct
frequencies and damping times that are derived directly
from the mass and spin of the remnant BH. With these
frequencies and damping times, we can plot them against
respective values of χ ranging from 0-1 (see FIGs.2-4).

Analyzing the plots, we can see that with increasing
multipoles, their frequency and Q factor is climbing. We
can also note that in each leftmost plot, the frequencies of
each overtone are spread at χ = 0. The frequencies and
damping times diverge towards infinity at χ = 1, but
never reach due to the extremal spins of astrophysical
BHs (χ < 1).

2. Dominant Mode and Overtones

When analyzing the fundamental 220 mode, we under-
stand why this is labeled the dominant mode. This mode
can be more easily recovered due to how ‘loud’ (highest
amplitude A in Eqn.1) it is compared to subdominant
modes. Berti et al. [13] showed that the ringdown anal-
ysis with only the 220 mode can lose 10% of potential
LIGO events [3]. Since this fundamental mode behaves
just as we expect (by having the highest frequency in
the 22 mode and showing to be the least damped), this
makes it the best recovery target.

When adding overtones, the frequencies and damping
times of the wave decreases as can be seen in FIGs.2-4.
Recovering ringdowns with higher overtones is where the
task becomes more difficult. For us to efficiently be able
to recover the 22 mode and higher overtones, we would
need a louder event or a more sensitive detector.
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FIG. 2. Dimensionless frequency f22n (left), dimensionless damping time τ22n (center) and quality factor Q22n = πf22nτ22n
(right) for changing l = m = 2 tones, as a function of dimensionless BH spin χ. Times are measured in units of tM ≡ GM/c3

for BH mass M .

FIG. 3. Dimensionless frequency f33n (left), dimensionless damping time τ33n (center) and quality factor Q33n = πf33nτ33n
(right) for changing l = m = 3 tones, as a function of dimensionless BH spin χ.

FIG. 4. Dimensionless frequency f44n (left), dimensionless damping time τ44n (center) and quality factor Q44n = πf44nτ44n
(right) for changing l = m = 4 tones, as a function of dimensionless BH spin χ.
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3. Subdominant Modes and Overtones

Simulating the subdominant modes along with their
overtones is imperative to understand how to deconstruct
real waveforms. When we begin recovering these HOMs
in true ringdown data, we will know what to search for
and soon be confident in what and where the best events
are to spot them.

Beginning with the first subdominant angular mode
(l = m = 3, n = 0), we note an increase in frequency from
the dominant fundamental mode (l = m = 2, n = 0).
The subdominant mode 33 is consistent in the decrease
in frequency with increasing overtones. We see the same
information when simulating the (l = m = 4) fundamen-
tal mode along with various overtones.

B. Waveform Fitting

Waveform fitting is crucial in the process of recovering
QNMs. We use our knowledge of QNMs to create an
algorithm that fits to a specific waveform’s properties.

For these simulated post-merger events, we are able
to specify the angular modes, l and m, as well as the
overtone, n. In return, we have access to the frequencies
and damping times of different modes and overtones [14].
The amplitude, phase, frequencies, and damping times
are all accounted for in the fitting process. The fitting
algorithm itself fits for the amplitudes and phases of each
individual mode and the remnant mass and spin.

To start waveform fitting, we begin with a noiseless
IMR signal. We use PyCBC [15] waveform generators
and approximants IMRPhenomXP (XP) [16] and IM-
RPhenomXPHM (XPHM) [16]. Both of these approx-
imants are useful to create phenomenological inspiral,
merger, and ringdown waveforms for multiple cases of
merging BHs. XP accounts for the 22 mode and a number
of overtones while XPHM accounts for the 21,22,32,33,
and 44 modes and overtones. XP is simply a portion of
XPHM.

By supplying these approximants with a luminosity
distance, inclination angle, mass and spin for each BH
in the system, they will generate waveforms on a case-
by-case basis. Here, the inclination angle is the angle
between our line of site to the source and the orbital an-
gular momentum direction, normal to the binary orbital
plane. An inclination angle of 0 corresponds to a binary
orbit that is "face-on" and π/2 is an "edge-on" orbit.

We chose to work with three cases: equal masses and
no spins, equal masses and z-component only spins, un-
equal masses and no spins. Each case is tested in both
of the waveform approximants used in our analysis, XP
and XPHM.

To be sure that our fitting algorithm returns accurate
values for remnant mass and spin, amplitude, and phase
of each QNM, we implement the use of another Python
package, surfinBH [17, 18]. By giving surfinBH a mass ra-
tio and spin magnitudes, it generates a value of expected

remnant BH mass and spin with a 1-σ error estimate. We
compare these to our remnant values from the waveform
fit to see how well they compare and if our values are
acceptable according to surfinBH (see Table I).

An additional check for goodness-of-fit was calculating
residual values. The residual value we calculate is as
follows,

1−R2 =
SSres

SStot
, (4)

where SSres is the sum of squares of the residual (the
addition of the squares of deviations from actual values
of data) and SStot is the total sum of squares (the sum
over all differences from calculated data and overall mean
squared). For the best 1−R2 value, the residual sum of
squares variable needs to be small (close to zero) so when
divided by the larger value of the total sum of squares,
the value remains small - a well-fit waveform.

III. RESULTS

In this section, we discuss differences between the XP
and XPHM waveform approximant. By evaluating three
different cases, we focus mainly on how t0, the start time
of the ringdown to be analyzed, can be shifted to re-
flect a smaller 1 − R2 value and exhibit the inclination
dependency of that value. For the non-precessing sys-
tems that we are considering here, the inclination angle
is constant throughout the inspiral and merger and the
resulting remnant BH spin is aligned with binary orbital
angular momentum. The higher order mode content of
the GW is known to be a strong function of that inclina-
tion angle.

To achieve an acceptable 1−R2 value, we first had to
test what could possibly affect the fit. One major factor
(noted in Isi and Farr [8]) was that ringdown analysis can
be highly affected by what time we decide to signal the
start of the ringdown. To account for this, we generated
waveforms and fits at multiple different start times to see
how the goodness-of-fit would alter.

A. IMRPhenomXP

In XP, there was a successful recovery of the 22 mode
along with its overtones n=0,1,2. By allowing the algo-
rithm to recover 220, 221, and 222 values for amplitude,
phase, along with remnant mass and spin, we present an
acceptable fit of a generated BBH merger waveform (see
FIG.5).

When calculating the 1 − R2 value at every t0 and
individual inclination, the data reveals where the best
fit will occur. As shown in FIG.6, we see how the plots
and data change with different cases. The earlier and
later times show high values of 1 − R2, then there is a
noticeable centrally located dip where we have the best
values.
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For inclinations considered, we see that a ringdown
start time of t0 = 1ms results in a better fit than for
t0 = 0s. We note a strong inclination dependence for
these XP cases. The majority of this dependence happens
when t0 > 0, inclinations showing separation after 0s.

FIG. 5. Waveform fits for specific case of equal masses and
no spins with an inclination angle of 0 and t0 = 0.001s. Top
plot is XP approximant and bottom plot is XPHM.

QNM Fit SurfinBH
Remnant Mass Remnant Mass Error
Mf (M⊙) Mf (M⊙) %
76.1 [t0 = 00.00s] 76 0.13
78.0 [t0 = 00.01s] 76 2.63
78.2 [t0 = 00.02s] 76 2.89
77.9 [t0 = 00.03s] 76 2.50
77.9 [t0 = 00.04s] 76 2.50
... ... ...

QNM Fit SurfinBH
Remnant Spin Remnant Spin Error
χf χf %
0.66 [t0 = 00.00s] 0.69 4.35
0.71 [t0 = 00.01s] 0.69 2.90
0.71 [t0 = 00.02s] 0.69 2.90
0.69 [t0 = 00.03s] 0.69 0.00
0.69 [t0 = 00.04s] 0.69 0.00
... ... ...

TABLE I. SurfinBH versus QNM Fit parameter estimation
results. The changing row values in each column represent an
estimated remnant mass and spin. In this table, the values of
the QNM Fit column are based on an XPHM equal masses
and no spin case where the inclination angle is 0 and t0 ranges
from 0.00s-0.004s.

FIG. 6. XP’s inclination dependence at different start times
of the ringdown analysis. Uppermost plot is an equal mass
(M1 = M2 = 40M⊙) case with all spins set to zero. Middle
plot is an equal mass case but with spins of each BH set to
0.5 in the z-direction. Bottom plot is showing an unequal
mass (M1 = 40M⊙, M2 = 20M⊙) case with all spins set to
zero. The best fits in all plots happen around the t0 = 0 time
with the far left and right data points showing high values of
1 − R2. The remnant mass, Mf , for the equal mass cases is
estimated to be 76M⊙ where tM = .0004s. For unequal mass
case, Mf is estimated at 58M⊙ where tM = .0003s.

B. IMRPhenomXPHM

For the XPHM approximant, there was also a success-
ful recovery of the modes included. These modes be-
ing 21,22,32,33, and 44 along with their zeroth, first,
and second overtones. The algorithm has fit for every
mode configuration’s amplitude, phase, remnant mass,
and remnant spin of the final BH.

In FIG.7, the plots also present the 1−R2 value at each
t0 with an inclination dependency. Here we see that, at
least for the case of equal masses in the binary, the best
fit is obtained when t0 is slightly negative. There isn’t as
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drastic of a slope when starting at earlier times as there is
with XP. As we mover farther away from t0 = 0 ringdown
start time, the values of 1−R2 become gradually worse.

There is also a weak dependence on inclination angle.
The four different inclination angle values all stay rela-
tively close to one another as the start time changes.

FIG. 7. XPHM’s inclination dependence at different start
times of the ringdown analysis. Uppermost plot is an equal
mass (M1 = M2 = 40M⊙) case with all spins set to zero.
Middle plot is an equal mass case but with spins of each BH
set to 0.5 in the z-direction. Bottom plot is showing an un-
equal mass (M1 = 40M⊙, M2 = 20M⊙) case with all spins
set to zero. The best fits for the top plot happens to appear
in the merger time, before t0 = 0. The best fits in the middle
and bottom plots are centered at the t0 = 0 time with the far
left and right data points showing greater values of 1 − R2.
The remnant mass, Mf , for the equal mass cases is estimated
to be 76M⊙ where tM = .0004s. For unequal mass case, Mf

is estimated at 58M⊙ where tM = .0003s.

IV. FUTURE WORK

There is still much to be researched within BH spec-
troscopy. What this paper has proven is that we are fully

confident in recovering multiple higher order QNMs with
different cases of BBH coalescences.

One step that would be extremely beneficial for a con-
tinued analysis is adding simulated noise on top of the
GW signal. By doing this, we would introduce new tech-
niques and further our understanding for future real sig-
nals. Adding more system cases is also a topic of interest.
With case expansion, we will have more reliable informa-
tion and a better grasp on what we will possibly see and
recover in the future.

The final step for this work would be to use this anal-
ysis on real GW signals. This would be a true test of our
recovery of QNMs from a noise-filled signal along with a
test of the NHT and gravity in the strong regime.

V. CONCLUSION

Higher order QNMs from BBH mergers have proven
to be extremely significant in the ringdown phase of the
GW signal. Here, we have expressed how QNMs help to
describe properties of the remnant BH and the HOMs
allow us to test GR in the strong regime.

We have shown only noiseless scenarios, but the data
from these noiseless signals are useful. By showcasing
that the start time of the ringdown phase is a large fac-
tor in goodness-of-fit and recovery, this is a functional
part of past, current, and future ringdown analysis. On
top of this, inclination dependency is also to take note of.
With approximant XP, inclination dependency was high
due to attempting to recover only one mode with a few
overtones. When using XPHM approximant with addi-
tional modes and their overtones, we see a much weaker
dependence on inclination angle.

The future of HOM recovery within the ringdown of
BBH systems is promising. With many people working
on problems similar to the one presented in this paper,
there will be more information available about these pro-
cesses in the near future. We are hopeful to uncover more
about QNMs of BH mergers and how they will present
themselves in the future with even more sensitive detec-
tors.
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