LIGO SURF 2022

Improved Targeted sub-threshold Search for Strongly Lensed Eravitational Waves with Sky Location Constraint

Final Presentation

Aidan Chong ${ }^{1}$

Mentors

Alvin Li², Ryan Magee ${ }^{2}$, Juno C.L. Chan ${ }^{1}$, Cody Messick ${ }^{3}$, Alan J. Weinstein ${ }^{2}$

1. Department of Physics, The Chinese University of Hong Kong
2. LIGO Laboratory, California Institute of Technology
3. LIGO Laboratory, Massachusetts Institute of Technology

Gravitational Lensing

Light source (Star)
(2)

Image 2

- Change in Image position
- Change in amplitude
- Change in arrival time
- Similar to a lens placed between the observer and the light source.
$>$ Einstein Ring

(160)
 kagra) Lensed Gravitational Waves

Strongly lensed Gravitational Waves:

$$
\begin{aligned}
& h_{j}^{\text {lensed }}=\sqrt{\left|\mu_{j}\right|} \times h^{\text {original }}\left(f, \theta, \boxed{\Delta t_{j}}\right) \times e^{i \operatorname{sign}(f) \Delta \phi_{j}} . \\
& \text { Magnification factor }
\end{aligned}
$$

- Arrival time difference between a pair of lensed images
- Morse phase shift
- f is the frequency of the GW and θ represents other CBC parameters => same morphology

- Difference in amplitude
- Difference in arrival times

KAGRR/Importance of GW Lensing
 GIGO)

- Give information on the source and the lens
- Cosmology
- Distribution of dark matter
- Find out the large-scale geometry of the universe
- Calculate the Hubble's parameter
> Expansion rate of our universe
- Test of General Relativity
- GR predicts the occurrence of lensed GW
- No lensed GW have been detected yet
- Detecting a lensed GW would prove Einstein right (Again)

LIGO SURF LANSNGSEARCHES 2.0
 Lened GW Can (Not) Be Searched

GIGO
 virgo
 General Search Pipeline

Matched filtering using templates

e.g. GstLAL and PyCBC

Output a ranked list of possible GW candidates For future follow up

2 Types of Signals

- Super-threshold signals
- Events that have high enough ranking statistics
- Relatively high intensity
- All GWs in the LIGO catalogue are super-threshold signals
- Sub-threshold signals
- SNR high enough to produce a trigger
- Insignificant ranking statistics

Lensing Search Pipelines

- Examples
- TESLA (GstLAL based)
- PyCBC
- Strongly lensed images would have similar intrinsic parameters
- Targeted Search
- Only use template banks similar to the targeted GW event

Li et al.

Then why am I here?

- Each targeted search can return O(10) candidates
- O3a has ~ 40 events -> return ~ 400 candidates
- O4 would probably produce O(100) events -> return ~1000 candidates

My Aim

Why is it possible

- LIGO can only constrain the sky location to the order of degrees

BUT

- Shift in image position due to lensing is in the order of arc seconds
$>$ Just assume both images would come from the same sky location

Skymap of GW190408

Likelihood Ratio

- The likelihood ratio of a trigger that is produced by a real gravitational wave is given by:

$$
\mathcal{L}=\frac{P\left(\vec{D}_{H}, \vec{O}, \vec{\rho}, \vec{\xi}^{2},[\Delta \vec{t}, \Delta \vec{\phi}] \vec{\theta}, \text { signal }\right)}{P\left(\vec{D}_{H}, \vec{O}, \vec{\rho}, \vec{\xi}^{2},[\Delta \vec{t}, \Delta \vec{\phi}] \mid \vec{\theta}, \text { noise }\right)} \cdot \frac{P(\vec{\theta} \mid \text { signal })}{P(\vec{\theta} \mid \text { noise })}
$$

- $\overrightarrow{\Delta t}$: arrival time difference between detectors
- $\overrightarrow{\Delta \phi}$: arrival phase difference between detectors
- Just by considering these 2 terms can constrain the sky location

Visualisation

$$
\overrightarrow{\Delta t}=0, \overrightarrow{\Delta \phi}=0
$$

$$
\overrightarrow{\Delta t}>0, \overrightarrow{\Delta \phi}>0
$$

Reading Skymaps

- Modify the GstLAL pipeline to allow the user to input LIGO skymap

Plotting PDFs

- Plot the distribution of $P(\Delta t, \Delta \phi)$ in the $\Delta t, \Delta \phi$ space.
- Make a new plotting script to calculate the probability and plot the graph

No sky localisation
Parameters:
Detectors: H1 and L1
Horizon distance $=100 \mathrm{MPc}$
SNR = 10

Sky Tiling

- The probability density is calculated grid by grid
- The image would come from the same patch of sky if it is the lensed counterpart of the target
$>$ Re-calculate the probability density

Removing unnecessary jobs

- Reducing 3000+ jobs to

O(10) of jobs (67 jobs for GW190519)

- Completing a PDF map in about 2 hours

Probability Distribution

Skymap of GW190519

90\% credible region: PDF > 0 and uniformly distributed among the regions

Program flow

Result

No sky localisation

Parameters:
Detectors: H1 and L1
Horizon distance $=100 \mathrm{MPc}$
SNR = 10

With sky localisation

Event: GW190519
Detectors: H1 and L1
SNR = 10

The Earth is rotating...

- $\Delta t, \Delta \phi$ would be different at different times
- Calculate many PDFs at different times
- Lensing might cause delays in O (months)

9:00am

12:00pm

Generate PDF maps on the run?

- Around O(10000) triggers for 1 targeted search
- Many maps would be needed
- Generating a map takes O(hours) (even after massive efficiency improvement)
- Very inefficient

Rotating the skymaps

Sky location of the source viewed from the Earth at Different Times

Rotates 180 degree to the right

Sky location of the source viewed from the Earth at Different Times

KAGRQ) Rotating for a whole cycle

Event: GW190519
Frequency: 240 steps per sidereal day rotation Detectors: H1 and L1

$$
S N R=10
$$

How many is enough?

Find 90\% credible region

PDF Map 2

Overlapping Area

- Yellow Region: pixels within the 90% credible regions of both maps
- Green Region: pixels within the 90% credible region of only 1 map
Purple Region: pixels that are outside the
 90% credible regions of both maps

Overlapping Percentage

- Overlapping percentage:
$\frac{\text { yellow region }}{\text { yellow region }+ \text { green region }} \times 100 \%$
- Requirement: the percentage of the
 least overlapping adjacent maps over one sidereal day rotation would be larger than 80\%

Result

- 720 steps per rotation satisfies the requirement with a minimum value of 82%
$>$ Generate a new map for every 2 minutes /

Variation of Overlapping \% over 1 Sidereal Rotation
 0.5 degrees

Special thanks to Andrew for giving me the idea of just looking for the dips to save computational time ;)

Implementation

Mock Data Challenge

- Choose a real super-threshold signal / generate a simulated signal
- Produce copies of the signal with lower amplitudes (simulate sub-threshold signals)
- Inject both types of signals into real noise data
- Use searching pipelines to search the data and try to retrieve all injected signals

Mock Data Challenge

Test for:

- How many injections we could retrieve
- Efficiency of the search
- Number of real injections retrieved vs number of noise triggers with the same ranking statistic threshold
- \underline{F} alse $\underline{A l}$ larm Rates of the real injections before (vanilla TESLA pipeline) and after the implementation of the sky location-constrain method

Prediction
New FAR

Possible Applications

- GW from GRB events
- BNS merger
- GW from supernovae

Acknowledgement

Thanks for

- NSF, LSC and Caltech for making the programme possible
- The Chinese University of Hong Kong for funding my trip
- All of my mentors
- All other people who had helped me along the way

LIGO
Scientific
Collaboration

End of Presentation

Q\&A

Appendix

Contemporary Research

- LVK O3a lensing paper
- Lensing statistics
- Re-analysing events under lensing hypothesis
- Multi-image search
- Microlensing search

Multi-image Search

- Images might be amplified or deamplified
- Incident angle
- Path of travel

Relativistic Deflection angle

Finding the deflection angle around a spherical object (e.g. BH/NS) (Assumed strong lensing)

- Starting from Schwarzschild metric

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

- Geodesic equation gives:

$$
\frac{d}{d \tau}\left(g_{\mu \nu} \frac{d x^{v}}{d \tau}\right)-\frac{1}{2} \partial_{\mu} g_{\alpha \beta} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0
$$

- Solving it gives:

$$
\alpha=\frac{4 G M}{r_{c}}
$$

- No worries, Alvin will give detailed derivation during the seminar :)

Image Position \& Deflection Angle

- Deflection angle:

$$
\alpha=\frac{4 G M}{r_{c}}
$$

- When the source, lens and the observer are perfectly aligned on a plane, the image position is:

$$
\theta=\sqrt{4 G M \frac{D_{L S}}{D_{L} D_{S}}}
$$

