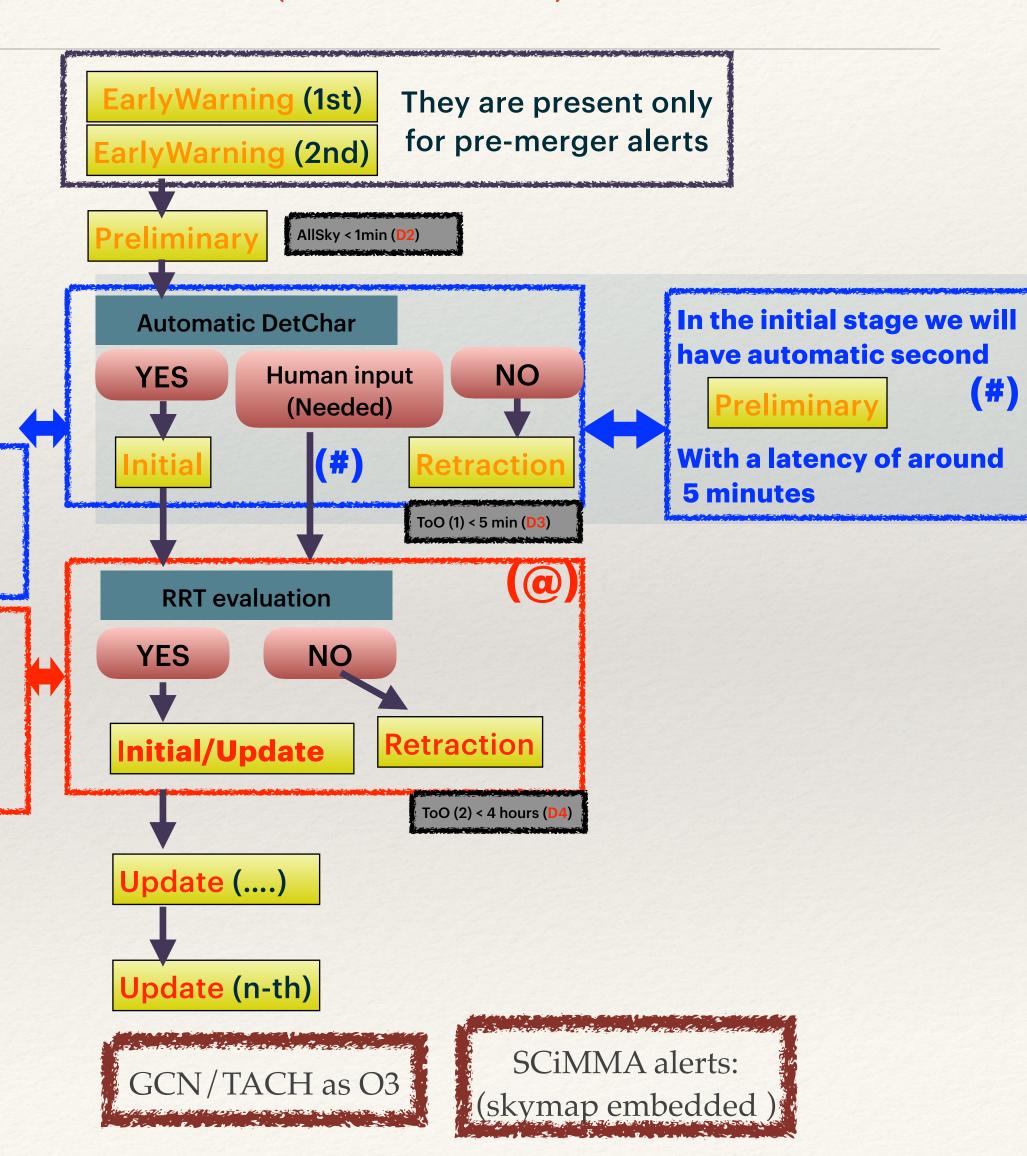
R. De Pietri, S. Ghosh and Soichiro Morisaki for the LVK collaboration

Low-Latency analysis and alert update


LIGO-Virgo-KAGRA Town Hall Telecon - Thursday, 21 July 2022

Plan of the talk

- * General plan for O4 alerts (stream and content)
 - MassGap classification removed from p_astro and moved to source properties.
 - GCN Notices and Circulars (as in O3)
 - New SCiMMA and GCN alert
 - New format for skymaps (multi-order HEALPix)
- * On going MDC testing
- * Change with respect to O3 (RAVEN+EarlyWarning)
- * Final update (September 2022)

PUBLIC ALERT time-line (GCN)

- > BNS/NSBH early warning pipeline (This stage may not apply and we should expect that an early-warning event is followed by a general all-sky search (need to fix the timing).
 - (1st) Early Warning alert (fully automatic) with no localisation information.
 - (2nd) EarlyWarning alert (fully automatic) as soon as sensible localisation information is available.
- After Detection search is completed by All the pipelines (Including RAVEN) or as soon as sensible information is collected. (Within 1 minutes. Targeting < 30s).
 - Preliminary alert (localisation information needed)
- We target a fully automatic DETECTOR characterisation checks that would allow:
 - Initial (Fully automatic) alert, automatic Initial circular sent
 - Retraction (Fully automatic) alert, automatic Retraction circular sent
- > RRT meeting and a fast PE evaluation. Typically within 4 hours for BNS events or 1 day for vanilla BBH.
 - (1st) Update alert (human confirmation and evaluation). Update circular sent
 - Retraction alert (In case the event should be vetted). Retraction circular sent
- Any time a significant new information is collected, verified and approved we will send:
 - (2nd) Update notice and circular sent (within 1 day). Update circular sent
 - (3rd) Update notice and circular sent (within 2 day). Update circular sent
 - (4rd) Update notice and circular sent (within 1 week). Update circular sent

PUBLIC ALERT (notice) CONTENT 04

The alert WILL provide the following information:

- * **SKYMAP_FITS_URL**: Localisation information using the multi-order fits format (no-flatten) since it is NOW supported by VO-standards
 - The name of the file will include the **SEQUENCE_NUM**
 - The first early waring alert will be without localisation information.
- * FAR: The False Alarm Rate (i.e.,
- * **GROUP_TYPE**, **SEARCH_TYPE**, **PIPELINE_TYPE**: (Relative to the trigger that was used to determine the localisation information)
- * Search pipeline based probabilities p-astro probabilities:

 PROB_BNS+ PROB_NSBH+PROB_BBH+PROB_TERRES=1.0

Rapid source properties parameter estimations EM-Bright: PROB_NS (0...1), PROB_REMNANT(0...1)

- * A new EM-Bright probability (PROB_MassGap) removing the probability of mass-gap from p-astro as it led to confusions.
- * For each trigger, we will publish in GraceDB the pipeline specific quantities (like p-astro probabilities and FAR) for the search that contributed to the alert.
- * We will also provide these information over Kafka topics distributed by SCiMMA and GCN.

O4 classification

- Boundary at $3\,M_{\odot}$

bayestar.multiorder.fits,0

EVENTPAGE URL:

COMMENTS:

COMMENTS:

```
m_1 \ge m_2 by definition

m_2 \ge m_2 by definition

m_1 \ge m_2 by definition

m_2 \ge m_2 by definition

m_1 \ge m_2 by definition

m_2 \ge m_2 by definition

m_1 \ge m_2 by definition

m_2 \ge m_2 by definition

m_1 \ge m_2 by definition

m_2 \ge m_2 by definition

m_3 \ge m_2 by definition

m_4 \ge m_2 by definition
```

```
TITLE:
NOTICE DATE:
                 Mon 16 Dec 19 21:50:12 UT
NOTICE_TYPE:
                 LVC Preliminary
TRIGGER NUM:
                 S191216ap
TRIGGER_DATE:
                18833 TJD; 350 DOY; 2019/12/16 (yyyy/mm/dd)
TRIGGER_TIME:
                 77618.472999 SOD {21:33:38.472999} UT
SEQUENCE_NUM:
GROUP TYPE:
                 1 = CBC
SEARCH_TYPE:
                 1 = AllSky
PIPELINE TYPE:
                 4 = gstlal
FAR:
                 1.131e-23 [Hz] (one per 10...........0 days) (one per 28...........00
years)
                 0.19 [range is 0.0-1.0]
PROB NS:
                0.00 [range is 0.0-1.0]
PROB REMNANT:
PROB MassGap:
                 1.00 [range is 0.0-1.0]
                 0.00 [range is 0.0-1.0]
PROB BNS:
                 0.19 [range is 0.0-1.0]
PROB NSBH:
PROB BBH:
                 0.81 [range is 0.0-1.0]
                 0.00 [range is 0.0-1.0]
PROB TERRES:
TRIGGER ID:
                 0x10
                0x1898405
```

SKYMAP_FITS_URL: https://gracedb.ligo.org/api/superevents/S191216ap/files/

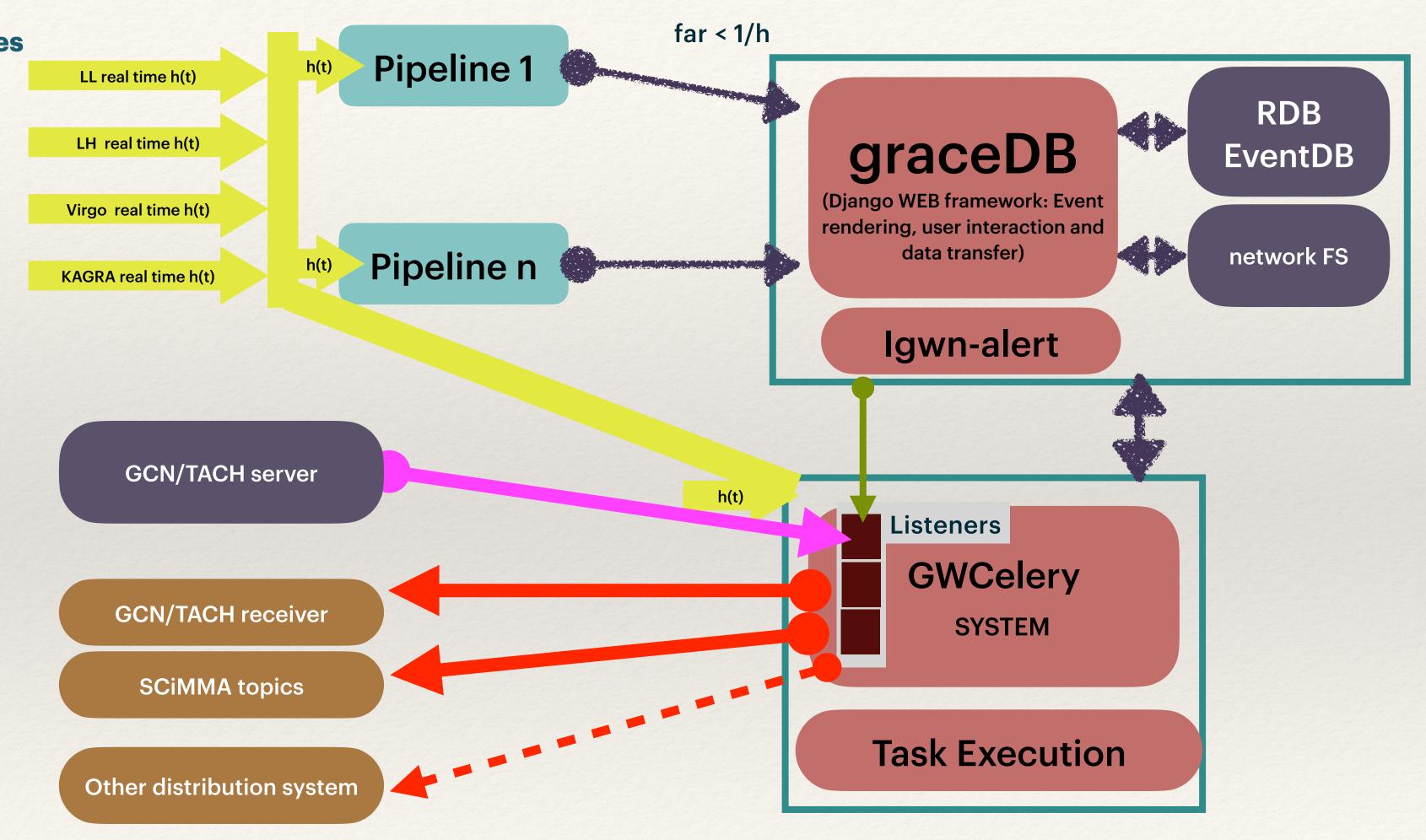
LVC Preliminary Trigger Alert.

This event is an OpenAlert.

https://gracedb.ligo.org/superevents/S191216ap/view/

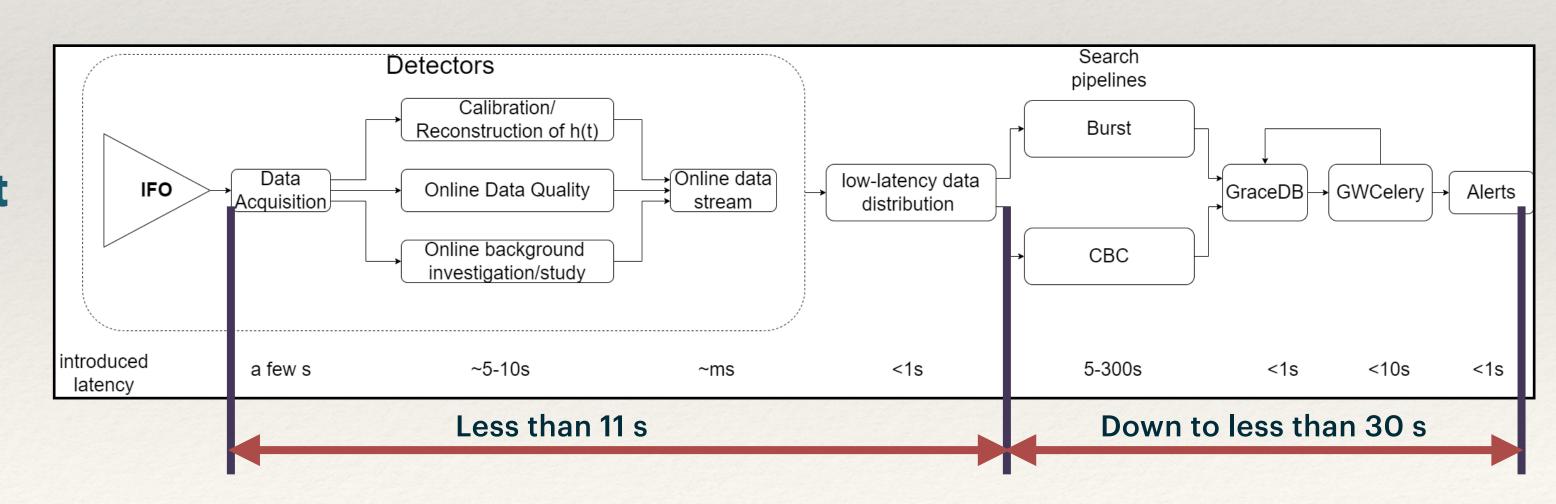
VIRGO Observatory contributed to this candidate event.

LIGO-Hanford Observatory contributed to this candidate event.

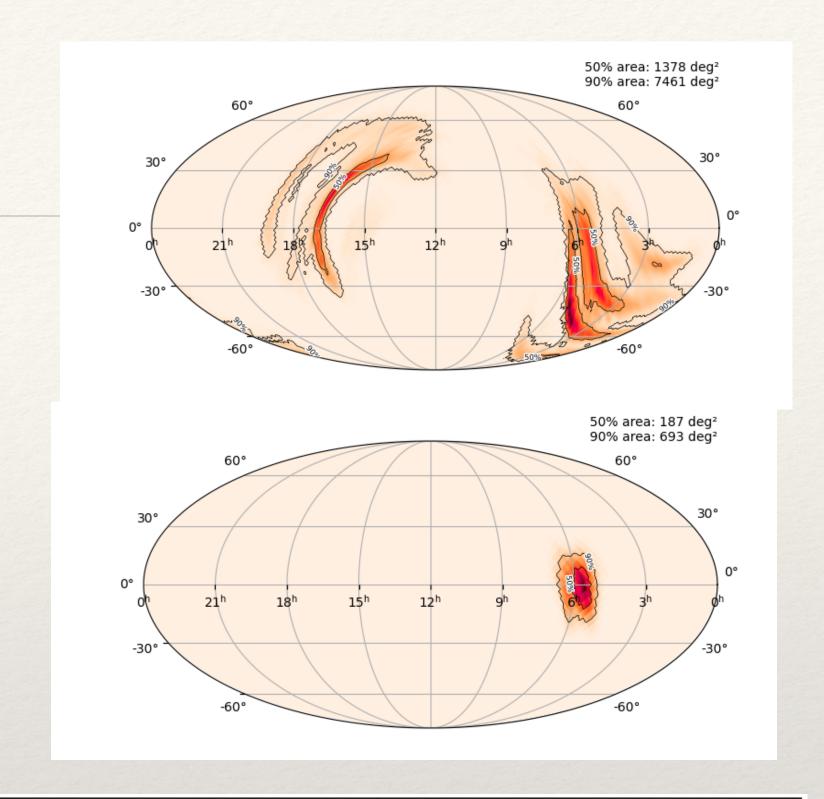

Skymap format

- * We will provide localizations in two HEALPix formats, distinguished by file extension:
- * *.multiorder.fits (PREFERRED change with respect to O3)
 - A new variant of the HEALPix format that is designed to overcome limitations of the *.fits.gz format for well-localized events from three-detector operations and future gravitational-wave facilities (see rationale in LIGO-G1800186). It uses HEALPix explicit indexing and the NUNIQ numbering scheme, which is closely related to multi-order coverage (MOC) maps in Aladin. This is the internal format that is used by the LIGO/Virgo low-latency alert pipeline. This is the primary and preferred format, and the only format that is explicitly listed in the GCN Notices and Circulars. (See: https://emfollow.docs.ligo.org/userguide/tutorial/multiorder_skymaps.html)
- * *.fits.gz (They will be available in GraceDB with a latency of order ~10s)

 A subset of the standard HEALPix-in-FITS format (see semi-official specifications from the HEALPix team and from the gamma-ray community) that is recognized by a wide variety of astronomical imaging programs including DS9 and Aladin. It uses HEALPix implicit indexing and the NESTED numbering scheme. (Will be created for legacy usage)
- * Both formats always use celestial (equatorial, J2000) coordinates.

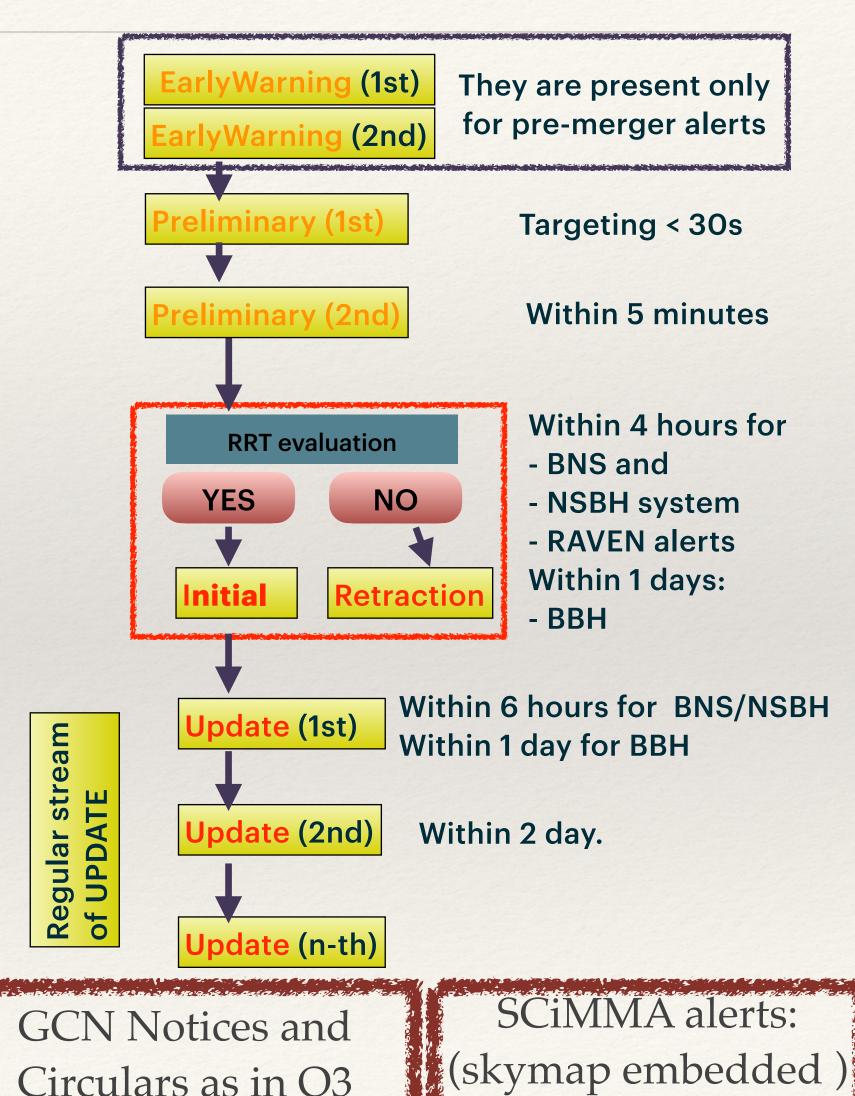

Alert infrastructure

- We operate multiple on-line detection pipelines that upload candidate events (G-event) to a database (GraceDB) if they have a false alarm rate (FAR) of less than 1/hour.
- > An events database (GraceDB)
- > The GWCelery system that:
 - Ingest GCN/TAC alerts to ingest external events (E-events)
 - Aggregate coincident-in-time events into super-events (S-events).
 - Generate external alerts if the combined far of the S-events meet publication criteria.
 - FAR < 1/(2 months) for CBC events
 - FAR < 1/(year) for Burst events
 - combined spatial-temporal far with external events.


Latency Study (from signal to alert) MDC

- We are running extensive tests (already started up to engineering runs) from data acquisitions (synthetic) to alert generation, and we are monitoring latency.
- > We have the signal ready to be analyzed online in less than 11 seconds from the arrival of the (GW) signal at the detectors.
- That makes pre-merger alerts possible (with negative latency) and to have the first preliminary alerts in less than a minute (target < 30s).
- The study will also allow us to test the effectiveness of the online pipeline to detect and assess the properties of the signal.

RAVEN and LLAMA pipelines


- LLAMA: online search pipeline combining LIGO/Virgo GW triggers with High Energy Neutrino (HEN) triggers from IceCube. Looks to temporally-coincident sub-threshold IceCube neutrinos.
- ➤ RAVEN: Rapid On-Source VOEvent Coincidence Monitor (RAVEN). It searches confidences between GW events with alerts for gamma-ray bursts (GRBs) and galactic supernova alerts from the SNEWS collaboration.
 - Notice Type Considered: FERMI_GBM_ALERT, FERMI_GBM_FIN_POS, FERMI_GBM_FLT_POS, FERMI_GBM_GND_POS, FERMI_GBM_SUBTHRESH, SWIFT_BAT_GRB_ALERT, SWIFT_BAT_GRB_LC,.....
 - It combines GW+GRB localisations to assist in identifying a counterpart kilonova transient.
 - It attributes new significance by computing additional combined spatio-temporal significance (far) for sub-threshold GW candidates, allowing the distribution of additional alerts.

Search	Pipeline(s)	Untargeted	Targeted
CBC-GRB	Fermi-GBM	[-1, +5]	[-1, +10]
	$\mathit{Swift} ext{-}\mathrm{BAT}$	[-1, +5]	[-10, +20]
	INTEGRAL	[-1, +5]	N/A
	AGILE	[-1, +5]	N/A
Burst-GRB	All GRB	[-60, +600]	N/A
Burst-Neutrino	SNEWS	[-10, +10]	N/A

What to expect (O4a)

- * MassGap moved from P_ASTRO to source properties section of GCN
- * EM-Bright probabilities (HasNS and HasRemnant) will be quantities marginalized over large number of equation of neutron star models (instead of single 2H Equation of State from O3)
- * Skymap information will be provided using "multiorder" MOC based fits format. Flattened skymap will be available in GraceDB for legacy usage.
- * Early Warning (negative time) alert will be provided
- * Coincident alerts (RAVEN+LLAMA) will be publicly distributed
- * MULTIPLE DISTRIBUTION CHANEL for alerts:
 - * GCN Notices and Circulars as in O3.
 - * Kafka based one with embedded skymap via SCiMMA and GCN
- * LIVE STREAM OF (MDC) ALERT WILL BE DISTRIBUTED starting September 2022.

Circulars as in O3

Conclusions

- * Expected latency of the alerts will be set and communicated in September
- * Starting September we will stream MDC alerts!
- * Looking forward to an exciting O4 Multi Messenger observation period!
- * Here to have your feedback!