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Abstract

This project will look into investigating and developing deep learning techniques to ap-
proach the problem of LIGO’s lock acquisition. Specifically we will look into leveraging
modern techniques in attention based learning to help estimate the state of the mirrors given
optical signals from the Power Recycled Michelson configuration (PRMI). We will also look
into the usage of deep reinforcement techniques and how one might craft a machine learning
model that is agnostic to any kind of setup for various degrees of freedom. In exploring these
techniques, should any approach prove successful, the impact would directly help improve
LIGO’s total operational time with an upper bound of improvement of 12%, which will help
accelerate the rate at which gravitational wave events are detected.

1 Introduction

LIGO stands for the Laser Interferometer Gravitational-Wave Observatory and is an observatory
built to detect the spatial dilations created by Gravitational Waves (GW). These dilations are small,
on the order of 10−18 − 10−22m [1]. To measure these small changes we use lasers, which are
setup as a Michelson interferometer to help reveal to us the small dilations of space. LIGO works
primarily by splitting a single beam in two which are sent down 2 orthogonal arms that then gets
reflected back. The beam that’s reflected back then gets combined where the lasers interfere op-
tically. The brightness of the beam is an indication of how far off from being in-phase the beam
is. This directly shows us the relative changes in path length of the two arms thus allowing us to
measure small changes in space.

However to achieve the sensitivity needed to detect these small changes, we require multiple mir-
rors to amplify the signal, and to increase the power circulating through the interferometer shown
in figure 1. One of these sets of mirrors is called the Fabry-Perot cavity [2]. These Fabry-Perot
cavities are used to recirculate the photons inside the 4km-long arms. This is so that they can ac-
cumulate more change in phase for the same displacement of the mirror created by a GW. This is
because reflecting the light between the cavity increases the path length light needs to travel. Thus
this turns what is technically a 4km physical arm into a nearly 1120km large “interferometer” for
GW detection.

Secondly, we have a cavity called the Power Recycling Cavity shown in figure 1. This is the
stage before the beam of laser enters the beam splitter. The purpose of this cavity is that, once
tuned to resonance, it puts more power through the entire interferometer [2]. We bounces light
back and forth which turns a 50W laser into a much more powerful beam with a gain of 50-55.

Finally we have a set of Signal Recycling Mirrors [2] shown in figure 1. This is part of the last
stages of the interferometer. Here we add a cavity that has the goal of amplifying the optical signal
and increase the detector bandwitdh. We can tune the resonance to choose to amplify the signal
amplitude at the price of further reducing the detector bandwidth or increase the detector band-
width at the price of a dampening of the signal.
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Figure 1: The blue highlighted boxes are the Power Recycled Mirrors, the orange boxes indicate
the Fabry-Perot cavities and the green box indicates the signal recycling mirrors.[2]

For this project we will focus on a particular system called the Power Recycled Michelson con-
figuration. Specifically we want to help improve putting the Dual Recycled Michelson (DRMI) in
resonance, which is the area between the beam splitter and the two input test masses (ITM) as well
as the two recycling cavities that aren’t between the beam splitter and the two ITM. The purpose
is to test our approaches to simpler setups before moving forward with various ideas. Details can
be found on the figure 2.

Now, the issue with these mirrors and cavities is that these mirrors can move with seismic motions.
To fix this we suspend them as these mirrors in a 4-stage pendulum above ground to passively
dampen these motions. However, since we suspended them, their motion now has 6 degrees of
freedom, 3 translations and 3 rotations. The pendulums allows us to reduce the motion above the
pendulums resonances (greater than a few Hz). However these movements are large for motions at
the resonances, on the order of a few microns which is far too large for our desired precision. We
need a way to try and stabilize these motions of our mirrors. To simplify our problem let us restrict
our attention to just longitudinal motion. This the motion along the direction in which the light
travels and is the motion that affects our detectors the most. More specifically, there is a total of 7
mirrors. However, since we only care about the relative positions between a given pair of mirrors,
we can reduce the number of degrees of freedom to the following: 1. the changes of the arm length
due to GW 2. the changes between the beam splitter and the input test mass, (”short Michelson”)
3. average length change of the arms, this is the Michelson interferometer (MICH) 4. the changes
of the power recycling cavity length, (PRCL) 5. the changes to the signal recycling cavity length
[2].
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Figure 2: The blue highlighted region is the Power Recycled Michelson (PRMI). The mirrors
labeled PRM stands for the power recycling mirrors and the ITM is the test mass and the BS is the
beam splitter. The BS and ITM forms the short Michelson Interferometer and the PRM and the BS
is the Power Recycled components.[2]

Despite this the issue with the movement of the mirrors, these motions are controllable as they are
part of our suspension system. The regime when they are controllable is a linear region where we
can easily retrieve the relative position of the mirrors and drive the motions close to 0. By 0 we
mean the operational point, where all the resonance conditions are fulfilled to achieve power build
up and high sensitivity of the instrument to GW. However, the mirrors cannot be controlled in all
situations because in non-linear regions we don’t know the relative positions generally.

That being said, what do these linear and non-linear regimes actually correspond to? These linear
and non-linear region corresponds to the behaviour of the optical signals that we receive from
each cavity. It turns out, we cannot retrieve information about the relative positions of the mirrors
directly. Instead, we have signals from the lasers that are reflected within the cavities who’s power
corresponds to the relative position of the mirrors. The issue is that this relationship between
position and the power of the signal is, in general, non-linear. There are regimes in which we know
that the relationship between position and signal is linear. We can ”detect” when we’ve achieved
this is if the signals of the laser are of high power, and remains relatively constant. However, for
practical cases we just require it to be high power. In this regime, the control problem is solved.

For completeness, these ”optical signals” that are available to us comes from a technique called a
variant of the Pound-Drever-Hall. What happens is that we inject a laser beam into the interferom-
eter. The signal is frequency modulated such that the sidebands of the signal are not resonant with
the Fabry Perot cavity. But instead we can tune the power recycling cavity such that it is resonant
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Figure 3: These 10 plots is an example of the 10 optical signals we would expect to receive. Notice
each are labeled for the following ports ‘POP‘ - Power recycling cavity pick off and ‘AS‘ - stands
for anti symmetrical port and ‘REFL‘ - stands for reflection. We have that ‘ pow‘ = total power
‘45*‘ = demodulated at 45 MHz 90* = demodulated at 90 MHz. Then we have the (i) and the (q)
which stands for each of the demodulated signals has two ”quadratures”. [2] The data shown are
simulations of the optical signals we expect to receive.

with these sidebands. What this does is that this allows us to be sensitive to changes in the PRC
and not in the Fabry Perot cavity which is subject to both GW and to various arm motions. We
of course need to demodulate the signal, at the reflection port (REFL) or at the power recycling
pick-off (POP) which provides signals that measure the power recycling cavity length (PRCL) etc.
Specifics on what this signal actually looks like can be found in figure 3

In the end, what isn’t solved is the general case. To control these mirrors in general, we need to
”acquire the lock”. The whole purpose of lock acquisition is to develop a scheme in which we can
drive the movement of the mirrors into a regime in which the relationship between signal and the
relative positions have a linear behavior from a regime where the relationship is non-linear.
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Figure 4: Here is an example of the position of simulated mirrors. This is the data we wish to
recreate given the signals obtained from figure 3.

2 Problem Statement

The main problem we are trying to solve is acquiring the lock for these mirrors. As mentioned
before, acquiring the lock when given the position of the mirrors is already solved! The problem
is, in general, we don’t know the state of the mirrors. The only data we receive are the optical
signals that come from the interferometer (IFO), which is a complicated strongly nonlinear func-
tion, and the solutions are non-unique. This makes it a non linear control problem. What is even
more difficult is that, attempts at linearlizing the problem works only a small fraction of the state
space. The probability that the mirrors fall within the linear regime by chance is 10−9. We can
reduce the problem down to, how can we develop a means of constructing the current state of
the mirrors given this optical signal input? Here is an example of what we want, we want to
produce the relative motions of the mirrors, i.e the state of the mirrors shown in figure 4

Some requirements that we expect a solution to have:

· 1 Predict / infer the positions of the mirrors accurately

· 2 Run fast enough on real time data as to match the sampling rate

· 3 The predicted states must be a continuous mapping of signals to the states

These requirements suggests the end to build some kind of continuous non-linear state estimator.
In this context, when we mean continuous, we mean that small changes in the data results in small
changes to the outputs. A direct consequence of this constraint is that we expect the predictions
to not include nonphysical jumps in the estimated positions. Example of these unphysical jumps
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Figure 5: This is a sample of the state reconstruction performed by previous ML models. The
jump of data points between -200nm to 200nm at short intervals of time are examples of these
unphysical jumps that we wish to avoid. Note this isn’t data from the PRMI but from the Fabry-
Perot cavities.

created by previous ML based reconstructions of the mirrors states can be seen in figure 5. Thes
are due to the periodic conditions and to having trained the deep neural network with wrapped
positions

Additional elements to consider:

· Memory The model might need to have a mechanism or attention mechanism for the data input.

· Online Learning We might have to tune model in an online way

· Small Models Build small models and employ inductive biases in order to make things run faster
with simpler solutions

As further explanation, there are a few additional reasons to leverage historical data when making
inferences. Firstly, when building the model, the nature of the input data is that it is relatively
small and ambiguous if taken out of the context from a history of past signals in past time steps.
Thus if we were to build a model on just looking at individual samples it would be a more difficult
challenge. Furthermore, we know before hand that the data is time series. We know the data
represents a complicated nonlinear mapping of the positions of the mirrors of which follow some
kind of dynamics i.e the positions evolve as a function of time. Thus it is to our advantage to
construct a model that can exploit this assumption about the data when making an inference. We
can exploit it either implicitly by feeding data that contains historical information or explicitly by
”baking it into design” such that the architecture utilizes the temporal data in a sequential manner.
An example of these sequential techniques are recurrent models.
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3 The Status Quo

Currently the classical approach to this problem in the configurations for the Power Recycled
Michelson (PRMI) and the Dual Recycled Michelson (DRMI) is to use linear combinations of
these optical signals to reconstruct the mirror motions specifically when triggered by resonance
crossing. This resonance crossing is when carrier or sideband power crosses a threshold. This is
not ideal, firstly because there is a low probability that this might happen. Secondly the controllers
have a short time to decelerate the mirrors to maintain this lock.

Previously, deep learning solutions to tackle this problem, researchers have developed a non-linear
continuous state observer for the IFO system in an attempt to reconstruct these positions from the
optical signals.

The approach uses Gated Recurrent Units (GRU) and deep learning techniques to tackle the non-
linear nature of the error signals. This approach although relatively fruitful in demonstrating its
ability in reconstructing these positions from simulations, still has problems. How do we to enforce
the continuity of the output signals: some times they have large nonphysical jumps, see figure 5.

The root cause of the issue is that for any given signal, multiple positions can correspond to the
same signal.The solutions are only unique up to a multiple of half the wavelength of the laser,
in the case of the Fabry-Perot case. It is a bit more complicated in our setup but the essence of
the problem is the same1. So if we want to devise an algorithm that inverts the problem, we are
restricting the algorithm to just return the solutions from 0 to 1/2 wavelength instead. But, this
would introduce sharp changes in actual positions because clearly any mirror can move beyond
the restricted region, we just choose to shift all solutions between 0-1/2 wavelength solutions. To
recover this nonphysical adjustment we apply something like the wrapping function, which detects
this discontinuity and tries to adjust the solution such that the discontinuity is gone by effectively
stitching the solutions back such that its continuous. The problem is that the current deep neural
net fails because the solutions are smoother than what we can detect as being a discontinuity.

Furthermore, the models were relatively large and running them in real time might present itself as
a challenge. We can see the architecture of the model in figure 6

These GRU’s were trained on simulated data. Currently we have simulations that, when given the
relative positions of the mirrors, it can simulate the signals we would typically expect from the
signal readouts. This will form the basis of the training data for any kind of machine learning
technique.

1https://gitlab.com/gabrielevajente/prmi-ml
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Figure 6: This is the GRU model architecture from previous attempts at producing a continuous
state estimator.

4 Proposed Solutions

There are a few directions to approach this problem. One approach the problem in a encoder de-
coder model in a supervised learning setting. The second approach is to develop a similar model
as the GRU except we use attention based recurrent networks instead of a simple gated recurrent
network. Lastly, we can approach the problem to learn general controls in a reinforcement learn-
ing, online learning fashion. Here are the details of each approach.

4.1 Time Series Encoder / Decoder Method

Firstly we will make use of the given simulations from the mirrors. We will start off with a simple
neural net that will take in time series data over a certain interval and we train it to recreate the
positions of the mirrors. Then we tune the model to real data by placing it in an encoder decoder
setup. This works by trying to output the positions of the mirrors during this time. We will then
feed this back into the simulation and try to recreate the original signal in which we feed the data
in. The errors created between the two are used to update the neural network. The benefit is that
we can frame the problem into a simpler supervised learning encoder decoder format almost akin
to variation of an autoencoder. These kinds of algorithms are well studied in literature and would
be interesting to leverage these techniques. [3]

4.2 Attention Mechanism

Attention based models and Transformers are models that have taken the world of ML by storm
[4][5]. The incredible ability to selectively tune focus on certain areas of data has rendered mem-
ory issues with previous recurrent neural networks an almost trivial problem. With this recent
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movement, attention mechanism could be a viable direction of investigation for state estimations.
The goal is to replace the multiple GRU layers with with a multi-headed attention layer in order
to decrease the size of the model. The hope is that this allows us to extend the scope [length of
time] at which the model can take in data which can potentially produce more favourable results.
Previous GRU’s suffered from vanishing gradients when we backpropagated too far in time.

Furthermore, we can try to implement the same kind of regularization to ensure continuity as
discussed in the previous online learning strategy.

4.3 Deep Deterministic Policy Gradient

If time allows we can consider the following:
Deep Deterministic Policy Gradients (DDPG) is a model-free off-policy algorithm for learning
continous actions. It combines ideas from DPG (Deterministic Policy Gradient) and DQN (Deep
Q-Network) [6]. It uses networks from DQN, and it is based on DPG, which can operate over con-
tinuous action spaces. We can try to change the supervised learning problem into an RL problem.
We can attempt to transform the supervised approach into an RL problem by setting the action as
the predicted state, and the state as the input signal.

Then we have an Actor. The Actor will be the model that predicts the position of the mirrors.
The Critic could be the simulation that takes in the positions and recreates the supposed signals.
The reward would the losses or in this case the reciprocal of the losses. This is different as the
value of the action (the predicted state) depends not depend on the future state of the signal, but on
the current state of the signal. The rest of the approach follows that of a DDPG model.

Another formulation is for the RL model to learn directly from interacting with the controllers.
By controllers we mean the actual inputs that move the physical mirrors. So the approach will be
bypassing creating the state of the mirrors by directly informing how the physical mechanisms of
the mirrors should react. We develop the critic to evaluate how well the model is ”in the linear”
regime. This can be gauged by the time spent in this linear regime. This way the model can learn
how to act by playing the these controls. The benefit is that this would in theory make this ML
model agnostic to any setup! With other approaches, we are limited to the simulations on various
simplified setups. To develop a solution for the full problem, we’d need to then develop more com-
plicated simulations for the entire setup, furthermore should any configuration change we’d have
to adjust simulations to accompany this. Should a solution exist, the benefit with the RL model
interacting with controllers is that no simulation is even required. This allow might allow us to
generalize the solution better.

The reason we choose to approach it this way is because the action space is continuous. In other
words, we can expect if the input states are continuous, and change very little between time steps,
that the outputs would also change by small amounts. This might require us to abandon the ap-
proach where we compute positions in batches of time intervals, instead we predict positions sam-
ple by sample. By sample by sample, we mean that historical data is inputted but the output would
be a single sample. Note we will still need historical data as to avoid trivial mappings of single
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samples to sample.

4.3.1 Online/Active Learning

We can also try approaching the various techniques with active learning specifically by updating
the network live while making predictions[7].

The intention with approaching the problem with this direction is that it might not require us to
hold memory of all the previous time series data since the model adapts and tunes the model on
real data on the fly. The hope is that the model only needs to fit a small subset of the nonlinear
relationship between the relative positions and the signals produced because its forced to fit to
the data locally in time. Rather than building a model that fits to the data globally in the situation
where we separated the training the execution by freezing the weights. Furthermore, regularization
of nonphysical jumps is easier to control in this approach. We can penalize the model on the fly
for when predictions are clearly nonphysical [at least we can try!].

5 Foreseeable Roadblocks

For the first RL approach, disregarding an explicit memory mechanism might be an issue. We
might need to devise a means of passing information from previous snapshots in time series data.
Furthermore in the online setting, controlling model might be difficult. If model evolves through
time by updating the network on the fly, it’s not always guaranteed it will behave in the way we
intend it will. We might need to develop a series of checks and balances to guarantee the model
doesn’t produce unwieldy reconstructions, or have “backup” models.

Furthermore, the RL approach might also be difficult specifically in constructing a value function
that instructs the policy on the kinds of outputs we should be expecting. Intuitively we would
frame the value function as

Lastly, the approach using encoder decoders still lacks a very satisfying means of ensuring con-
tinuity. Furthermore, the solutions are not unique, and so building a one model fits all might not
solve our problems in the way we intend it.

6 Timeline

This is the current running timeline for the project. The starting week would be in week of June
13th. Plan is to implement the online learning the approaches using JAX [8] and HAIKU [9] and
the rest of the training for the Attention based RNN models either also JAX/HAIKU or KERAS
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[10]. The reason for this choice is the flexibility in designing models and is the new trend of ML
based frameworks.

· Week 1 Review code base and re-implement previous GRU in KERAS framework [10]

· Week 2 Benchmark KERAS framework (make sure they perform the way we expect it). Build
environment for online learning simulation.

· Week 3 Implement encoder decoder strategy

· Week 4 Buffer week - in case results aren’t as expected.

· Week 5 Start attention RNN model approach

· Week 6 Fully implement + tune the model

· Week 7 Evaluate the performance

· Week 8 Buffer week - if extra time look into using RL models

· Week 9 Wrap up results and begin write up or presentation

· Week 10 Discuss next steps and finish outstanding deliverables.

7 The Impact

There are two broad areas of impact for this kind of work should we be successful. Firstly, this
will directly help LIGO operate at longer observational times. Currently, classical systems take ap-
proximately 12% of the time to acquire the lock and to drive the motions of the mirrors down to an
operational regime, during which the detector cannot observe. Should we be successful in develop-
ing an effective locking acquisition scheme, we can work towards lowering the 12% standby time
in hopes of increase in observing time. This is under the assumption our technique generalizes to
LIGO’s more complex configurations. We currently estimate, with back of envelope calculations,
that we loose out on ∼ 11 events, given a total 12% downtime and having discovered 90 events in
the recent GWTC-3 catalogue release.

The second impact would be the demonstration of using ML based techniques in controlling state
of the art equipment. The machine learning and reinforcement learning literature have been notori-
ously known for making improvements in simulated and game-like environments with few applica-
tions real world control problems. The reason why use cases of ML in real world control problems
remain rare is mostly due to the simulation to real challenges (sim2real gap). Building such a
successful model or approach would be an incredible demonstration of real world applications of
the theoretical advancements in the field of ML and control theory to hard control problems.
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8 Forward

Moving forward, the goal for this project is to experiment with these to ideas and to investigate
the benefits and the draw backs of each approach. Future plans maybe to incorporate this kind
of algorithm on table-top experiments or with the 40m prototype to test the performance of our
approach in the real world.
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