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1 Introduction

This project’s primary goal is to investigate and develop deep learning techniques to approach the
problem of LIGO’s lock acquisition. Specifically, we will look into leveraging modern techniques
in attention-based learning to help estimate the state of the mirrors given optical signals from
the Power Recycled Michelson configuration (PRMI). We will also look into the usage of deep
reinforcement techniques in controlling the mirrors directly.

In this interim paper, we report the first 1
3 of the project in progress. During the first 3 weeks of

active research, we first replicated previous deep learning approaches using gated recurrent units
(GRU). Secondly, we developed an attention-based state estimator using a transformer architecture.
Thirdly, we conceptualized a velocity-position uncertainty estimator in an attempt to use sensor
fusion techniques to reconstruct the state of the mirrors. Furthermore, we ruled that the Encoder-
Decoder model should be explored only when a working model has been established. Lastly, we
implemented a Deep Deterministic Gradient Policy (DDPG) model for a reinforcement learning
approach. We report that all three approaches have yet to be thoroughly tested but have now been
built. We remain inconclusive but hopeful as to the success of the three techniques.

2 Problem Statement

There are two approaches to acquiring the lock for a given set of mirrors at LIGO. The safe ap-
proach is to learn an estimate of the state of the mirrors and the ambitious approach is to learn the
controls directly to drive the motions close to 0. The first approach is considered sufficient since if
we know the state of the mirrors, it is relatively easy to build these controllers. This is considered
safer because the model only suggests additional information to the controllers, furthermore, it
is more interpretable than the latter approach. The second approach removes any trace of inter-
pretability and requires one to have faith in the model that it can do what it is set out to do and not
break in production.

2.1 The State-Estimator Problem

We revisit the central issue in the state-estimator problem. What we want is, given a set of optical
signals, we want to get out the relative positions of the mirrors. The problem is that there exists
an infinite number of solutions where these positions satisfy the optical signals we inputted to the
model. This is generally not a problem, any solution would work. The issue is, once a solution is
chosen, we need to follow that solution over time to preserve the continuity of these trajectories.
To simplify the nonuniqueness of the problem, we can ”wrap” the data to force the labels to have
unique solutions during training.

To perform this wrapping technique we first need to understand the system we’re working with.
Recall that the PRCL and MICH are sets of mirrors and together form a system highlighted in
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Figure 1: Ψ are the signals we get, however note that there are complex exponentials thus are
periodic and is related to LMICH and LPRCL

figure 2. We can numerically recover the signals produced from the length LMICH and LPRC using
a set of equations shown in 1. following equations, where k is the wave number and Ω is a constant
related to the laser, c is the speed of light:

φMICH = kδLMICH±Ω/cLMICH

φPRC = kδLPRC±Ω/cLPRC

With enough elbow grease one can reduce the signals Ψ’s such that they are related to LMICH and
LPRCL. The issue is that leaving it in such a form it is difficult to retrieve the period of the signals
analytically since there is a mix of terms with LPRC and LMICH . Thus to simplify this we can apply
a linear transformation namely

Z1 = 2(LPRCL +
LMICH

2
)

Z2 = 2(LPRCL−
LMICH

2
)

If we plug this transformation into the equations we retrieve a period of /2. With this transforma-
tions we can now wrap the data.

Firstly we will take the PRCL and MICH positions and follow the transformations described for
Z1 and Z2. After that is done, we iterate through the data and linearly shift up or shift down by
integer multiples of the period such that all positions are restricted between λ/4→−λ/4. Then
we transform back returning the PRCL and MICH positions successfully wrapped. This helps
guarantee that for every signal the corresponding wrapped position is unique!

This technique is a problem in production. When computing these we have to undo this prepro-
cessing step and unwrap the data in a manner that retains continuity such that the reconstructions
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Figure 2: The rectangle boxed section is the PRCL MICH system that we’re considering.

are accurate. We need to unwrap the data inorder to recover the true positions. This is what we call
the wrapping problem.

3 Baseline Model

Previous attempts in state estimation used gated recurrent units called GRUs [1] [2] to predict the
wrapped positions. GRUs are a class of recurrent neural networks. Recurrent neural networks
(RNN) are simply neural networks that work with sequential data. They are often written with
a recursive definition. A more concrete implementation requires one to pass information from
previous time steps to the next. At the first time step, we input data into a classical neural network,
then during the next time step, we input both the new data observed and the hidden state from the
previous time step and continue until we reach the end of the sequence. Each set of feed forward
networks for input data is called a cell or unit. This way we can pass information from previous
observations to inform the model in the decision-making process. The classical RNN described
suffers from a host of memory issues. With each passing of hidden states, data from the beginning
may not be represented well further down the sequence, GRUs take the RNN idea further by
developing specific gates within each cell that manipulate the hidden states that are passed down
called the reset gate, and update gate[1]. The reset gate can selectively choose to nullify certain
data that are passed from before, and the update gate decides what’s important to pass on to the
next state[2].

This technique was chosen because the data is time series and secondly the input data is relatively
long on the order of 1000’s input samples. This was the reasoning for this approach back in 2017.
To that end, our first task was to replicate these results which we successfully did.
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Figure 3: This is the loss curve for the model training.

3.1 Methods

We implemented a GRU in KERAS framework[3]. The data used for training was simulated PRCL
and MICH with approximately 40,000 samples each 0.5 seconds long sampled at 2048Hz. Given
these optical signals, we then try to recreate a single-time step of position data.

The model architecture had 2 GRU layers, with 128 units each, followed by 4 fully connected
layers of 4092, 512, 32, and 2 units respectively. Each layer used a ReLU activation except for
the final layer which is given a linear activation. We used the Adaptive moment (AdaM) optimizer
with a learning rate of 1e-3. The reconstructions are as follows in the following diagrams 1.

This approach is insufficient because we cannot leave the data wrapped. This is because in reality
the mirrors are free to move beyond the range which we restricted the solutions to. Thus to re-
trieve the true relative motions we must stitch back the reconstructions. Furthermore, these sharp
positions are unphysical and is entirely the result of training the model on a training set where we
linearly shifted the data down into the range of λ/2→ −λ/2 where we know unique solutions
exist. However, piecing together these solutions is a surprisingly formidable challenge.

To appreciate the problem, how one would typically approach unwrapping the data is to write a
program that iterates through the reconstructions and detect sharp changes in position. Once the
discontinuity is found we transform the data into the Z1/Z2 space and linearly adjust by integer
multiples of λ/2 such that the discontinuity is minimized. The way in which we can detect these
discontinuities is to look at the derivative as finite differences. The big problem is that neural
networks are smooth mappings from input to outputs and in this case the outputs are also relatively
smooth thus it makes recovering the original discontinuities difficult see, figure 4. Although it
appears to be easy to detect by eye, to detect these sharp changes numerically is harder because
numerically because they appear smoother and can be confused with inperfect reconstructions.
Thus we’re met with the wrapping problem.

1Code link
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Figure 4: These are the reconstructions for PRCL and MICH.

page 5



LIGO-T2200196-v1

3.2 Control Problem

4 Attention Based Estimators

Perhaps we can defeat the wrapping problem, by ignoring wrapping problem? We approach the
problem with brute force. We assume that given sufficient history of signals, we can hope to extract
unique solutions for the input signal. The major challenge here is that even the GRU’s used in the
original implementation still fail to generalize to very long sequences of data. The problem of
retaining memory of various parts of a long sequence is a well-known shortcoming of recurrent
neural networks. Luckily in 2017, a novel approach in the domain of natural language processing
sought the advancement of transformers and the use of self-attention which effectively solved this
problem[4].

4.1 Self Attention

In principle, attention is an intuitive concept2. Traditional attention helps assigns a weight to
certain inputs of data as to how important they are to the problem they are trying to solve. In
technical terms, we call this a query. However there is an issue with this, we lack context! For
example, in the sentence, “I picked up some cash from the bank and went for a swim at the bank of
a river” the word bank has 2 different meanings. Humans interpret this by looking at the context.
To get machines to do the same is called self-attention. We look at the relationship of the word
“bank” with the word “cash” and then we look at the relative attention of the words “bank” and
“river” to infer these meanings. We look at the attention relative to words in the sentence itself,
hence self-attention. This attention gives context to the data. This effectively defeats the memory
problem because the model has no recurrent element! We do not need to engineer a means of
holding a single ”memory” unit when the model has completely freedom to attend to any input
information freely at any point.

Armed with intuition, we build such an algorithm 34. We have three main elements, the KEY,
the QUERY, and the VALUE each will be three separate linear layers 5. This is motivated by
how retrieval systems work. We have a query, and we find the matching key and return the value.
Attention is this search process. We only pay attention to the most similar items that we look for
and disregard the rest. This suggests that we want to find the highest amount of similarity with
itself as this is self-attention. Hench the KEY and the QUERY will have the same inputs to each
linear layer. Concretely one finds similarity by looking at the cosine similarity. This is easily
computed via the dot product. To do this with the matrices of the KEY and the QUERY, we simply
matrix multiply the outputs of the linear layers. This encodes the ATTENTION FILTER. We then
scale this layer and compute the softmax of this filter to arrive at numbers that sum to 1. Then
we multiply this with the VALUE, which up until now is just the input passed through a linear

2Good video on general attention here
3tutorial on transformers KERAS here
4Very good Youtube video on self attention here
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Figure 5: This is a concrete diagram showing the flow of data for self attention.[4]

layer. This matrix of numbers then helps us weigh and select the values from the original input
and thus gives us the FILTERED VALUES. This process is called self-attention with a single head.
If we want multiheaded self-attention, we repeat the entire process but with multiple layers and
concatenate the final results together!

Attention works well, however, there is a key problem, these models don’t consider ordering of
the data. One of the transformer’s great power is that it processes data in parallel instead of se-
quentially. This means that in the layer for self attention the aggregation is done on its own. More
concretely, the attention values will always be the same no matter the order in which they appear.
If we think about it, all the attention mechanism is doing is computing a weighted scalar between
any pair of data in the sequence this scalar is created with 0 information about positions. However
this would be a problem because in reality we know position affects how much attention is given to
each data point. Thus before the transformer step we need to encode the positions, footnote Good
video on positional embeddings here.

To fix this, we apply a positional embedding of the input, whereby we take the embedded data
(in NLP terms means converting text to vectors) we learn an embedding by adding vectors to the
embedded word vector. This small offset helps encode information about the positional informa-
tion of the vector WITHOUT changing the contextual representation of the input. For example,
the appearance of the word “Queen” as the second word in the sentence should appear nearby
in the vector space from other appearances of the word “Queen” but they all should nonetheless
be slightly different from each other depending on where in the sentence they appear. However,
they can’t be so far apart such that the word “QUEEN” appears to be an entirely different world
altogether! These “offsets” are what is learned by positional embeddings.

Here we arrive at the second major issue, positional embeddings work well for language tasks,
however, general time series data are not words. NLP tasks involve discrete chunks of inputs, that
are finite, for generic time series problems, we don’t have that luxury as data is continuous and
infinite. Hence positional embeddings become a problem. The solution involves representation
learning with an algorithm called the TIME2VEC embedding technique5 [5].

5Good Blog post on implementation of time2vec here
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4.2 TIME2VEC

Time to vector is an attempt to embed temporal information in time-series data. Firstly there are 2
major requirements for this embedding[5].

1. Embedded data should be invariant to time rescaling. In other words, if the data were taken at
increments of 1 day or 2 months, or 3 picoseconds it shouldn’t affect how the data appears in the
end. 2. Representations of time should both capture periodic patterns and nonperiodic patterns [5].

To satisfy these constraints we (of course very naturally) arrive at the following formulations[5].
The i is the index of the number of kernels, τ is the timeseries data itself. The wi,ϕi are the learned
parameters in which the

t2v(τ)[i] =

{
wiτ+ϕi, ifi = 0,
F (wiτ+ϕi), if1≤ i≤ k

(1)

I have yet to truly appreciate the mathematics of why this works but, concretely the first element
represents the linear behaviors of the data and the second represents the periodic behaviors of the
data where F is described as the a periodic activation function. Read more here [5].

Armed with these new techniques, we approach defeating the wrapping problem.

4.3 Results Stage 1

In stage 1, we want to first and foremost, ensure that we can at least replicate the performance of
the GRU on wrapped data with the transformers. We implemented the following model:

Time2Vec embedding Layer [no hyperparameters]

6 X Transformer Blocks [embed dim = 12, fully connected encoder =1024 , num heads=8]

5x Fully Connected [RELU, dims= 4096,800, 128, 32, 1]

Transformers can be difficult to train, as such we need a custom “warm-up” period whereby the
learning rate is low but grows exponentially to the initialized learning rate. Then the learning rate
decays for the remaining period until its reached a base learning rate. The warmup learning rate
is1×10−6and the peak learning rate is 1×10−3 and the base learning rate is 1×10−6 the warmup
time is 500 epochs6.

Note: we were only able to achieve comparable performance with the GRU models if we trained
separate neural networks for the PRCL and the MICH data.

6code here
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Figure 6: We see that the result is relatively similar and on par with the GRU model.

Here are the reconstructions after training in 6

We note that the training loss on the same data had a factor of 2 mean squared error more than the
traditional recurrent model.

4.4 Stage 2

In stage 2 we now try and and produce a transformer model that can reconstruct the positions of
unwrapped data. However before we attempt such we first train and evaluate a baseline model
using the GRU model on unwrapped data as a benchmark

4.4.1 Baseline GRU Model on Unwrapped Data

To be true to the problem at heart we use the same model design as with the wrapped data except
we extend the number of timesteps the GRU sees during training. In this case we extend it to 5
seconds of data. This was chosen due to memory constraints on the GPU when comparing this
with the transformer model later on. Transformer has more memory intensive operations and was
thus a bottleneck.

We have made the assumption that given sufficient amount of data we can accurate reconstruct the
unique positions despite the non-uniqueness of the signals corresponding to any given position.

Let us see how a GRU might perform against such a setup consider figure. 7

The model was trained with early stopping with 300 epochs worth of patience. The model training
only lasted 300 epochs since the loss does not chnage and stays at a constant 0.07 MSE.
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Figure 7: We see the predictions from the GRU is just a straight line.

We can directly conclude that the GRU is unable to produce the real unwrapped positions. There
are two potential reasons: 1) the GRU suffers memory issues due to long sequences or 2) There
isn’t enough data to inform the model which solution to pick and thus can not solve the wrapping
problem. We will investigate the issue by investigating the attention based model.

4.4.2 Attention Based Transformer Encoder Model

We now take the same attention based model used for the wrapped data but instead we are now
training it on unwrapped positions. Should our assumption be correct, that this is indeed a memory
issue with the GRU, then an attention based Transformer should alleviate such a problem. Below
we see a reconstruction after training it for 300 epochs with early stopping with a patience of 300
epochs. We once again note that the model produces a constant error of 0.06 MSE during training.
Consider the reconstructions below in figure 8

We see that the model clearly fails at reconstructing the positions as it predicts a constant function
which happens to be the average of the positions. We note that this is most likely not a failure with
the algorithm but an issue with the data. Should the data provided by solve-able with our technique
it could fail however, it should not fail as spectacularly as it did here. If it was a matter of number
of parameters or the number of layers etc then it should hint at at least possible variations. When
a model is a constant it could hint that the problem might not be well defined for the approach
or there is a fault in implementation. As the baseline test with wrapped data we ruled out the
possibility of the latter.
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Figure 8: We are getting just a constant function once again.

4.4.3 Attention Based Transformer Encoder Model Part 2

Despite our unsuccessful attempt, we further pursue this approach with a slight twist. During the
data generation process we restrict the initial start to be within the λ/4→−λ/4 range. The idea is
that if we restrict the model to see data that start from the same interval range, the model can learn
to reconstruct positions starting from the same initial state. This could potentially remove some of
the ”confusion” during training.

We note the results below. First note the training loss curve is jagged this time rather than a
constant, 9. This is in part due to the cycles of 10 epochs where we regenerate data. However we
note that during each cycle the training loss remains relatively constant indicating its not learning
anything.

We once again are faced with the same situation, the model fails to learn meaningful representa-
tions of the data see the reconstruction in figure 10. This let us conclude that the attention based
methods appear unfruitful from our investigation.

Note: this does not mean we’ve proven that attention based models will always fail for our problem,
we just concluded that for this project this direction appears unfruitful and due to time constraints
we decided to allocate time in other promising approaches.

4.5 Discussion On Attention Based Estimators

There are a number of reasons we decided to conclude this direction of investigation.
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Figure 9: The loss curve for second transformer approach.

Figure 10: Reconstructions from the second transformer approach.
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1. 5 - 10 seconds of hsitorical signals appear insufficent in uniquely reconstructing the unwrapped
position.

2. Computing constraints and production implementation challenges.

Firstly, we see from our investigation with 5-10 seconds of historical data we fail to reconstruct
the positions in a satisfactory way. From our experiments we conclude that more historical data is
needed to have any hope of solving the wrapping problem and even then there is no guarantee of
success. This brings us to the computing constraints. In production we cannot expect to save all the
historical data and recompute them on demand with every sequential update in timestep. Unlike the
GRU where we can simply take the last hidden state and store it in memory and then recompute
a single forward time step given the hidden state which is computationally cheap compared to
running 6 transformer layers each new timestep. Beyond the implementation issues, even just
training the model on the GPU is an issue as 5-10 seconds is the maximal limit of data we can
compute. Note that 10 seconds of data is approximately 20,000 time steps. If this were a language
task even for large language models this is rather unorthodox. In a language setting this is like
getting a large language model to read a prompt that the size of 1/3 of Harry Potter’s Philosopher’s
Stone and be able to produce meaningful results from it. Not surprised this approach wasn’t fruitful
yet.

5 Velocity Position Uncertainty Estimate

Having approached the problem with brute force as with attention, we concurrently investigate
more elegant means of reconstructing the positions. In this approach, we accept our doomed fate
and wrap the positions of the estimator. The trick is, that we know that the velocity of the mirrors
is unique. Given this information, we attempt to recreate both the velocity and the position of the
data. Together we can attempt to fuse these two data points together to reconstruct the accurate
positions.

To build intuition, for a given position, the next forward position will have an infinite number of
solutions. With the knowledge of the velocity estimate, we can use that to select a position (out
of the infinite solutions) such that the new velocity has the least uncertainty. To accomplish this
task we can use the Kalman Filter [6] to do such magic. Thus we reduced the problem to: “can we
build neural networks that can predict the inherent uncertainty in the prediction”.

5.1 Probabilistic Models

We take inspiration from Variational Autoencoders[7]. Consider a classical feed-forward neural
network for a regression problem. Now consider that the last layer splits into two layers which
we denote as the mean and the other as the log variance. Then when optimizing the model, we
compute the probability that the target appears in our predicted probability distribution. Intuitively
this makes sense in capturing the error of the estimator. If the model was inherently poor at making
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predictions, the variance should be high, this way there is a higher random chance that the model
predicts the correct solution. However, if the model is highly accurate, then the variance should
drop, or else there is a higher random chance it predicts data points far away from the target. Thus
in theory as the model improves, the variance should drop and the mean should approach the target
value. The PDF we chose is a Guassian given by:

P(y|µ,σ2) =
1√

2πσ2
e

1
2σ2 (−(y−µ)2) (2)

5.1.1 Position and Velocity Model

Let us take this probabilistic model and try to reproduce both the position and the velocity and their
associated uncerainties. To do so we construct two models one for position and its uncertainty and
similarly another for velocity. These models are identical in architecture.

The design is the exact same as the GRU baseline model except for the last layer where it splits into
a mean and a standard deviation which is the error. The standard deviation uses ELU activation
instead of RELU or linear.

We then construct a loss function which computes the negative log of the probability density func-
tion of a Gaussian given the mean and standard deviation produced by the model and the value x
which is the actual position or velocity. For given position or velocity y, and where µ,σ are the
associated mean and standard deviation, we want to maximize the likelihood.

max
θ

P(y|µ,σ2)) (3)

This is an equivalent optimization problem of maximizing the log likelihood which is the same as
minimize the negative log - likelihood.

min
θ
[− ln(P(y|µ,σ2)))] (4)

We implement this in the code as a VNET as this takes inspiration from variational autoencoders.7

5.1.2 Position and Velocity Training Results

TBD we have to rerun the training results because of wrapping problems.

7code: here
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Figure 11: Wrapped positions with shaded area as the error.

5.1.3 Kalman Filter

The last part of the puzzle is to implement the Kalman filter for our specific use case. As usual we
begin with intuition. Firstly we have both velocity and position data and their associated uncer-
tainties.

Now for every given new time step we can predict the wrapped position and we can retrieve its
velocity. Now theres two things we can do with this information, first we can take the previous
position and take the velocity and use simple kinematics estimate the next position. Secondly we
can also just get the next wrapped position, however to get back the unwrapped position we know
there is an infinite number of these each adjusted by some multiple of the wavelength. As the
usual wrapping problem states, which of these infinite solutions do we pick? Since we can use
kinematics to estimate a forward position we can use this information to help us ”select” one of
the infinite solutions.

What we do is we can take the uncertainties to propagate forward the errors when constructing our
kinematic solution for the next time step, this will be our prior distribution. Then we lay out all the
possible solutions forming a Gaussian mixture from our next predicted wrapped position. Each of
the solutions will be a candidate likelihood distribution. Now for each possible solution to pick
from, we can obtain the corresponding posterior distribution by using Bayes Theorem. We simply
multiplying the two distributions together. What we want to pick is the likelihood distribution that
gives us the maximum posterior probability. This posterior distribution with the highest peak will
be the best fitted position estimate!

Let us formalize this in an algorithm, please see pseudo code 1 for the structure of the algorithm.
Let us define the model p(θp,xt) for the position and v(θv,xt) for velocity with mean and covari-
ance µpt ,Σpt and µvt ,Σvt where the subscript denotes either position or velocity at times t. xt is the
optical signals received at time step t. θ is the weights. The total time is T . We denote P∗ as the
best prediction of position. p̂t is the position predicted by the dynamics. dt is the change in time.
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Algorithm 1 Kalman Filter
Initialize: we set m as the number of solutions we search for.
Initial estimate
µp0,Σp0← p(θp,x0)
µv0,Σv0← v(θv,x0)
Best estimate initially comes directly from the model.
P0← µp
while t ≤ T do

We first use the dynamics and update
µ ˆpt+1 ← µpt +µvt ·dt
Σ ˆpt+1 ← Σpt +Σvt ·dt2

Now we construct a Gaussian mixture of various solutions.
Get Wrapped position looking at one step ahead
µpt+1,Σpt+1 ← p(θp,xt+1)
µvt+1,Σvt+1 ← v(θv,xt+1)
We construct m possible solutions which have the same covariance but have shifted means

we denote µi
pt+1

,∀i ∈ (0,1, · · ·m)
Compute products of Gaussians
while i < m do

µi
t+1← (Σ−1

pt+1
+Σ

−1
ˆpt+1
)−1(Σ−1

pt+1
µi

pt+1
+Σ

−1
ˆpt+1

µ ˆpt+1)

Σi
t+1← (Σ−1

pt+1
+Σ

−1
ˆpt+1
)−1

Normalization Constant
Ci← 1√

det(2π(Σpt+1+Σ ˆpt+1))
exp[−1

2 (µi
pt+1
−µ ˆpt+1)

T (Σpt+1 +Σ ˆpt+1)
−1(µi

pt+1
−µ ˆpt+1)]

end while
Sort for the i that maximizes Ci. Denote the best value as i∗

P∗t+1← µi∗
pt+1

Now we update the positions
Σpt+1 ← µi∗

pt+1
Update the velocity with the predictions from before.

end while

Figure 12: The velocity where errors are the shaded.
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Figure 13: This is a grid of valid adjustments to the positions that would result in the same signals.

5.1.4 Kalman Filter Results

We then construct a grid of possible solutions, each with a Gaussian centered around them. This
can be seen in figure 13. Thus we can finally implement the algorithm to stitch back our solutions.
We can see the results in figure 14

6 Deep Deterministic Policy Gradient

6.1 Motivation

Generally speaking, some of the greatest advances in machine learning come from increasingly
abstracting away tasks and simply letting the machine do everything. This has loosely been the
trend in ML research for a number of years. Back in the ‘prehistoric eras’, ML models used to
work only with highly hand-crafted features for input, that was until the advent of deep learning
when we saw these features learned implicitly by our algorithms. We increasingly try to move the
human further away from the picture and surprisingly found huge improvements from computer
vision tasks to all the way to NLP. This similar philosophy is adopted by some of the most suc-
cessful ML researchers tackling various kinds of hard problem. Quoting Deepmind’s CEO Demis
Hassabis, ”let the gradients run through everything”. We approach hard problems initially with
an intermediate solution that often requires lots of hand-tuning, to which then practitioners try to
generalize the approach to the bigger problem. We saw this with the invention of the CNN, we
saw this with the invention of Alphafold1 → Alphafold2[8], we saw this with the invention of
transformers, and we will probably continue to see this trend until either we create the Terminator
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Figure 14: This shows that we’ve successfully unwrapped the positions with our approach!

and kneel before our AI overlords, or figure out some other way to solve intelligence. This is
scary because we lack agency, but time and time again we’ve been proven wrong, in a good way.
This possible upside in “superhuman” abilities alone is enough to warrant at least an investigation
into its potential. Because of this, despite my supervisor’s skepticism in letting me build an AI to
control LIGO mirrors directly, I wanted to approach this problem in the most general way possible
which is directly learning the controls of these mirrors.

More concretely, RL could be interesting because we know that giving only the information about
the signals might not be enough to recreate the positions. What might hint that RL can solve the
problem is that we can provide models with additional information, specifically the reward signal
at certain time steps. The optical signals received plus the expected reward for certain actions could
help us gauge what kinds of controls engage. This could provide unique solutions to the control
problem. However, this is not trivially clear that this is the case and further investigation is needed.
I briefly diverted some time on this problem.

6.2 DDPG Method

In classical approaches to reinforcement learning, we typically use tabular methods. These algo-
rithms work by searching a space of actions and storing these optimal actions at a given state in
Q tables. These tables help inform how to perform tasks given the state you’re at. Typically these
solutions could involve dynamic programming, temporal difference learning, or Monte Carlo tree
searches. These methods are only tractable when the state space is finite. However, in most prac-
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tical cases these state spaces are near-infinite. For this, we need approximate solution methods. A
well-known means of approximation is to use neural networks such as Deep Q learning [9]. Given
some arbitrary continuous state, we can predict the expected reward value for a particular action,
this is the q function in RL terms. However, neural networks have a finite number of predictions,
thus this method also relies on the fact that the action space itself is finite. What happens when
the action space is also infinite? Just like how we used a neural network to predict the action’s
value we use a second neural network to then evaluate the network’s performance in an ACTOR
and CRITIC setup. Similar to a generator and a discriminator in GANs for computer vision, the
actor, given the input produces actions that are continuous values. Then we have a critic that takes
in the state, and the predicted actions and tries to predict the expected discounted reward on that
action taken. This allows an agent to maneuver and learn from a continuous state space and action
space which is important in our setup.

To use this technique we have numerical simulations that provide actions based on the continuous
state of the optical signals. We also want to predict continuous actions and direct how much force
each of the servos should engage to drive down the motions. Thus the first RL approach we should
take would be DDPG methods8 [10].

6.3 RDPG Method

Not only do we need to implement a DDPG method, we also need to implement a recurrent version
of DDPG called RDPG. This is in part because we know in order to predict the dynamics we need
to get the velocity somehow and this requires us to use a recurrent model. Now this RDPG will
use the exact same set up with the original DDPG method except the replay buffer now indexes a
history of observations and actions to which we then feed the actor and the critic. The training step
is identical as a traditional DDPG except both models will get both the state/observation history and
the corresponding history of previous actions. We implement the the algorithm from the following
paper [11] section 3.1.2

6.4 First Iteration RDPG

For the first iteration of the RDPG we wanted to iterate quickly and thus we have resorted to down
sampling the simulation from a 2048 Hz to 20 Hz. This is meant as demonstration purposes to
iterate on various ideas before we tackle the bigger problem.

We implemented a Critic with the following architectures. Signal history is fed into a GRU with
128 units followed by another GRU of same size. Then we feed the action history into another
set of GRU with 128 units followed by a second GRU of the same size. The outputs of the two
are then concatenated and fed into a feedforward neural network of size 512 followed by hidden
layers of 256, 32 and 1 respectively. The model uses RELU activations. The Actor is symmetrical
meaning design wise it is the same except it has 2 outputs and the outputs are activated using tanh

8code: here
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Figure 15: This shows promising results! Note that the movements are on the order of 1/100 of
the wavelength and at this point the model starts producing signals that are high and constant for a
short duration of time.

since the actions need to be bounded.

We also have various hyperparameters. We restricted actions to a force of 10−3 and we gave the
initalization of the last layer of the actor ±4× 10−4 so that values initially stay close to 0. For
exploration we added noise to the predictions in the policy with a variance of 10−4 with mean 0.
We also have soft updates and gave τ = 10−6

Another caveat to this iteration is that we are using the real positions as inputs for the reward func-
tion. The reward function takes the negative MSE of the position, thus the smaller the movements
the greater the reward the model receives. The reason why we have not used only the signals for
the rewards is because crafting such a reward function is difficult and we want to first test if this
idea could even work. Hence the first iteration.

6.4.1 First Iteration Results

We see from first glance, the results appear promising! We see that the model has begun to learn
and is improving over time. Now the actual performance is still quite poor, we haven’t spent time
tuning or investigating this just yet. We believe this preliminary result is enough see figure 15

6.5 Reward Function

Reward function or the reward signal is the objective of the problem. On each timestep the en-
vironment sends the agent a single number and the goal is to maximize this reward over a long
term period. We know our goal is to push the mirrors into a linear regime. We can detect this
linear regime by looking at the signal responses specifically POP. When the power of the optical
signals shown by POP is high and constant, then we will know we can easily acquire the lock.
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To mathematically formulate this, we craft a reward function which is the inverse square of the
derivative of the power. This way, when the change is constant we get maximal reward whereas
any large change won’t receive any. We square it to make the reward invariant to the sign of the
derivative. We add an ε term to make this numerically stable. We also have a step function for the
reward. Given high power, we reward the model for achieving such. St is the state received from
the environment i.e the signals at time t. We set some const as the threshold for when we consider
it to be high enough power. We set α as a constant hyperparameter in scaling the rewards.

Rt =

{
[(dSt

dt )
2 + ε]−1 +α if St > const

−α, else
(5)

6.6 Results

TBD

7 Forward

In the first 3 weeks of the project, we have finished implementing nearly all the algorithms we
hope to investigate. We have implemented baseline models, attention-based estimators, velocity-
position uncertainty estimators, and DDPG models. We currently plan to dedicate the rest of the
time to tuning and investigating if these implementations work.
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