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ABSTRACT

Gravitational wave (GW) observations of binary black hole (BBH) mergers provide measurements

of BBH parameters such as mass and spin, which shed light on the evolutionary history of these

systems. We explore the distribution of BBH spin on a population level through looking at different spin

parametrizations. LIGO data currently provides strong constraints on effective spin, a mass weighted

average of component spin projected in the direction of the angular momentum, but component spin

is weakly constrained for individual events. Through a Bayesian hierarchical inference approach, we

explore whether we can differentiate synthetic populations with the same effective spin distributions but

different component spin distributions. We explore these spin distributions for two different population

sizes: one comparable to LIGO’s third observing run (O3) and one comparable to the predicted

population size after the next observing run (O4). This study demonstrates how current models of

spin distribution will improve with O4.

1. INTRODUCTION

LIGO made the first observation of a GW signal from a BBH merger on September 14, 2015 (Abbott et al. 2016a,b),

marking the beginning of an era of discovery. Since then, the LIGO and Virgo Collaborations have confirmed the

discovery of many tens of BBHs (Schmidt 2020). Each of these systems can be characterized 15 parameters: so-called

intrinsic parameters like the masses and spins of the two black hole, and extrinsic parameters like sky position and

orientation of the binary. In this study, we focus on intrinsic parameters, which capture the formation and evolutionary

history of BBH mergers. Specifically, we are interested in analyzing the spin parameters, using Bayesian inference

techniques to carry out parameter estimation.

The spins of black holes in binary systems can be parameterized in two ways which are useful in the context of

GW data: component spins and effective spin. Component spins are the individual spins of each black hole in the

binary. The component spin parameterization includes spin magnitudes and tilt angles, as shown in Figure 1. The

spin magnitude χi and the cosine of the tilt angle cos θi can be extracted from LIGO data, but with current sensitivity

they are poorly measured, as indicated by wide posterior distributions over the full allowed range of values. This

makes it difficult to precisely extract specific magnitudes and the tilt angles. However, effective spin is a well measured

parameter in LIGO data that shows up at leading order in gravitational waveforms. Effective spin, χeff , is an average

of the component spins in the direction of the angular momentum, weighted by each black hole’s mass:

χeff =
(m1χ⃗1 +m2χ⃗2) · L̂

m1 +m2

Figure 1 provides a visual for the component spins of a BBH. Although effective spin is the best measured spin

parameter, the component spins of BBH mergers are ultimately what we aspire to measure, as they provide strong

insight into these system’s evolutionary origins. BBH mergers primarily form through two different channels: an

isolated formation channel and a dynamical formation channel (Mapelli 2020). In the isolated formation channel, the

system starts out as a binary with two Main Sequence (MS) stars. After its MS phase, one of the stars expands,

allowing mass transfer to occur. The binary is then able to share a common envelope after that star collapses into a

black hole. There is a strong gas drag from the shared envelope, which makes the two bodies spiral into each other,

transforming kinetic energy into thermal energy. This thermal energy heating up the envelope can lead to its ejection,

finally allowing the system to evolve into a BBH merger. BBH mergers that formed through the isolated evolution

channel are commonly believed to have spins that line up with the axis of the orbit. On the other hand, BBH mergers

can form through a dynamical formation channel, which also starts as a binary with two MS stars. However, instead of
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Figure 1. The component spins of a BBH. The effective spin is the mass-weighted average of component spins in the direction
of angular momentum (L).

evolving in an isolated environment to its final stage of a BBH, this system experiences a third-body encounter. One

of the members of the binary is replaced by a stellar object in an environment such as a stellar cluster. Because this

third body enters at a later time, BBHs that are formed dynamically have spins with random orientations. Therefore,

gathering information on spin magnitudes and tilt angles of BBH systems can provide insight into these formation

channels.

However, because of the difficulty of constraining component spin parameters, effective spin is more commonly used.

BBHs formed in isolation have spins that are aligned, and therefore, the distribution of effective spins should be centered

around a positive value. On the other hand, BBHs formed dynamically have spins that are randomly oriented, and

therefore, the distribution of effective spins should be centered around zero. Using the data from the first and second

runs of LIGO and Virgo, the effective spin of BBH systems was found to be very small, with the mean of the effective

spin distribution, µ ∼ 0 with a narrow distribution (Miller et al. 2020). Miller et al. (2020) makes three hypotheses

on the component spins based on the near-zero effective spin: the component spins are generally perpendicular to

the binary’s orbital angular momentum, the component spins are generally anti-aligned, or the component spins are

simply very small (Miller et al. 2020). While no conclusions were drawn regarding rates of isolated formation versus

dynamical formation, the data points towards the existence of dynamically formed BBHs.

Using LIGO’s third observing run, Abbott et al. (2021) updated the posterior distributions of χeff and χp, finding

χeff to be centered around 0.06, suggesting that spin-tilt misalignments do not fully cancel out. They found χp to be

either centered around 0 with a broad distribution or centered around 0.2 with a narrow distribution.

While there is ongoing work studying the effective spin distribution in BBH mergers, analyses for component spin

distributions remain largely inconclusive. This largely unexplored parameter space has the potential to reveal formation

mechanisms in BBH systems.

Although component spin parameters at the individual event level are poorly measured, we currently have order(70)

events and more to come in LIGO’s fourth observing run. Using existing data from past runs, we want to judge how

informative the LIGO measurements are when analyzed collectively and see how these measurements could improve as

we approach LIGO’s fourth observing run. Specifically, we aim to answer the question: if we simulate three different

populations of BBH mergers with the same effective spin distribution but different component spin distributions, will

we be able to measure that they are different populations? It is worthwhile to explore component spin distributions

at the population level as we enter an era of increasing BBH merger observations to understand how informative the

LIGO data on component spin is or if we should only use effective spin in analyses?

2. METHODS

Existing data on BBH mergers that have been detected by LIGO yield relatively uninformative measurements of

component spins, as indicated by wide posterior distributions on spin magnitudes and tilt angles (see Figure 2). We

aimed to assess whether we can improve these measurements by conducting Bayesian hierarchical inference to obtain

population level posteriors on χi and cos θi. In addition to measuring the distribution of component spins across the

BBH population, these population level posteriors can also be used to update the individual event posteriors. To
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Figure 2. Example of an individual event posterior distribution showing wide posteriors for χ and cos θ for a synthetic BBH
merger event.

do this, we simulated synthetic BBH merger populations, analyzed the effective and component spin distributions,

and drew conclusions on the effectiveness of analyzing component spin distributions at the population level. We also

experimented with different population sizes, running the signal injection and recovery using an synthetic dataset

containing 70 events and then with 300. This allowed us to observe the improvement in posteriors from using the

current number of events we have to the estimated number of events we will have after the next observing run. The

overall method can be broken down into three steps: 1. Generate and inject synthetic BBH merger events into LIGO

data. 2. Run parameter estimation for the individual events. 3. Conduct hierarchical inference at the population

level.
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Figure 3. Three mock populations of BBH merger events with the same χeff distribution but different χp distribution, resulting
in different component spin distributions. Population 1 has high amounts of spin precession, Population 2 has medium amounts
of precession, and Population 3 has minimal precession. This results in three different component spin magnitude and tilt angle
distributions. The blue histograms are the synthetic underlying distributions, while the orange histograms are the synthetic
detected populations, which take into account selection effects. The similarity between the orange and blue histograms show
that the spin of these populations do not contribute much to to the detectability of a system. While this holds true for spin
parameters, other parameters such as mass and redshift substantially impact selection effects.

2.1. Simulating and Injecting Synthetic BBH Events

We simulated three synthetic populations of BBH merger events with the same effective spin distribution but spin

precession distributions, which yields different component spin distributions. Effective spin measures how much total

spin is in the direction of the angular momentum, while spin precession measures how much total spin is in the direction

perpendicular to the angular momentum. GW data captures these two spin parameters to then derive component

spin. Each population contains 50000 events, and the distribution of their spin parameters can be seen in Figure 3.

This code was written by Simona Miller and is largely based off Callister et al. (2021).

After generating these three populations, we randomly drew n samples from each population and injected them into

LIGO data, resulting in three mock catalogs, each of size n, containing synthetic BBH merger events. We ran the

entire signal injection and recovery procedure with n = 70 to observe the posteriors for a catalog analogous to that of

LIGO’s GWTC-3 and n = 300 to observe how the posteriors will improve once we obtain more data with O4.

2.2. Individual Parameter Estimation

After generating three mock populations for a given population size n, we ran a parameter estimation for each

individual event in each population, using bilby, a Bayesian Statistics library designed for parameter estimation

(Ashton et al. 2019). The bilby output yields posteriors on the leading order parameters for each GW event: effective

spin, mass ratio, chirp mass, and redshift (see Figure 4). It also yields poorly constrained posteriors on component

spin parameters (see Figure 2.

2.3. Hierarchical Inference: Population Level Parameter Estimation
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Figure 4. Example of an individual event posterior distribution showing leading order parameters for a synthetic BBH merger
event.

Using the individual posteriors, we ran a Bayesian hierarchical modeling procedure to analyze the summation of

these posteriors across the three different populations. This method takes in the bilby outputs and runs parameter

estimation on the hyperparameters describing distributions in the overall population. If we are able to recover the

original distributions shown in Figure 3, we can conclude that we are able to differentiate between BBH mergers

with different component spin distributions, whereas if we are unable to differentiate between the three samples, we

can conclude that we are unable to differentiate between BBH merger populations with different component spin

distributions at current LIGO sensitivity.
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Figure 5. Example of parameter values for each walker at every step in the chain during parameter estimation. Each color
corresponds to a different walker.

We explore various underlying models to describe the component spin magnitude and tilt angle distributions, in-

cluding Gaussian distributions, and binned distribution. We also explore modeling the spin magnitudes as a beta

distribution and the cosine spin tilt angles as a mixture of aligned and isotropic subpopulations with and without a

lower truncation bound, following the work of Collaboration et al. (2021); Callister et al. (2022). We are interested

in the truncated model for spin tilt to explore whether or not there is a cutoff in the tilt distribution. If there is no

truncation, the distribution is bounded by cos θ = −1 (spin aligned with angular momentum) and cos θ = 1 (spin

aligned with angular momentum). However, if the lower bound is not consistent with -1, this would imply that spin

tilt angles prefer aligned orientations. For example, if the truncation bound is 0, this would indicate that the data

contains no anti-aligned systems.

After choosing a specific model for the hierarchical inference procedure, we followed the tutorial from Callister et al.

(2022), running an MCMC sampler to explore the parameters. To inspect results, we first looked at the chains to

confirm that all the walkers converged (see Figure 5). We then look at the corner plot of all the parameters of interest

(see Figure 6). Finally, we make a trace plot corresponding to the spin magnitudes and tilt angles from Figure 6 (see

Figure 7.

3. RESULTS AND CURRENT PROGRESS

Using a beta plus truncated mixture model for the spin magnitude and cosine tilt angle, we were able to reconstruct

the injection populations from Figure 3. Figure 8 shows the trace plots for each of the three populations and the

KDEs of each underlying population distribution. Despite the truncated model being off from the injected spin tilt

angle distribution, the posterior still captures some of the original shape of the underlying distribution.
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Figure 6. Corner plot showing marginalized posterior distributions of hyperparameters of interest for population 3, using a
population size of n = 10.

I will also begin exploring other models for our component spin parameter estimation. I will explore a binned model,

where I will break the population down into separate bins and measure what fraction of the population wants to fall

into each bin. I will also explore models without the truncation in the spin tilt angles and a simple model using

Gaussian distributions. Because we do not know the true underlying population, we want to explore various models

to better understand which models are able to pick out certain characteristics in the population distribution.

We are also interested in exploring how the analysis of O3b results differ when excluding two events, GW 190911 and

GW 200129. I have run the hierarchical inference procedure using the beta plus truncated mixture model with and

without these two events, and I am currently reweighting the individual posteriors with the population level posteriors

that I have obtained to improve our results.
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Figure 7. Trace plot showing the set of spin magnitude and tilt angle distributions for a single population. This trace plot
assumes an underlying model of a beta plus truncated mixture. The solid blue curves show the 95th percentile.

Figure 8. Trace plots showing the effective spin, spin magnitude and tilt angle distributions for all three populations using a
beta plus truncated mixture model. The red curves show the underlying distributions from Figure 3.
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