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1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) measures gravitational
waves and is one of the pioneering instruments which help detect black holes and neutron
star mergers. The instrument, or more accurately, the suspended mirrors used, is highly
susceptible to vibration noise. The third-generation upgrade, LIGO Voyager, is planned to
improve the sensitivity by an additional factor of two and halve the low-frequency cutoff to
10 Hz by reducing quantum radiation pressure and shot noise, mirror thermal noise, mirror
suspension thermal noise, and Newtonian gravity noise. The thermal vibrations (or thermal
noise) are nullified by installing a cryogenic cooling facility which radiatively cools the silicon
test masses to 123 K.

1.1 Background

Constancio et al. [1] theorized that the silicon test masses would require a high thermal
emissivity coating to increase the radiative coupling to its cold environment and effectively
dissipate the absorbed laser power. To this end, we wish to determine the emissivities of
various black coatings as a function of temperature and subsequently use the best emissivity
material for the Mariner (Voyager prototype) upgrade at the Caltech 40m Lab. This is done
by obtaining cool-down curves in a cryostat designed specifically for the purpose of emissivity
measurement. Using a simplified heat transfer model, the emissivity and corresponding
propagated uncertainty is extracted from the cool-down temperature data.

1.2 Motivation

Running the experiment and obtaining the cool-down data is expensive and time-consuming,
with a time constant of several days. It becomes infeasible to run the experiments multiple
times and find the expected value of the emissivity. We thus run simulations prior to the
experiment and find the optimal experimental configuration and excitation, which gives us
emissivity with the least uncertainty, using Error Propagation and Fisher Information Matrix
analysis. The optimal configuration and excitation input obtained will then be used in the
experiment to get a close to accurate measurement of emissivity.

The lab’s ongoing work includes making design changes to the cryostat, which would mini-
mize heat leaks into the system. It would allow the test mass to cool down to 123 K quickly
and reduce the thermal noise injected into the system to get a less uncertain cool-down
output. My project would complement this effort by theoretically determining which design
parameters contribute the most to the uncertainty in emissivity and even suggest changes in
their values for future design upgrades of the cryostat. It would also corroborate the design
changes already made and recommend what optimal excitation should be given to make the
system robust to noise.

Further the same optimal experimental configuration obtained as a result of this project can
be used for emissivity tests of many key coating materials for the LIGO Voyager upgrade.
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2 The Cryostat

Figure 1: Caption

Figure 1 shows a simplified system diagram of the cryostat. The notation used in this report
is as follows,

T1 Test mass temperature
T2 Inner shield temperature
Th Outer shield temperature
ϵ1 Test mass emissivity
ϵ2 Inner shield emissivity
ϵh Outer shield emissivity
Ah Total area of heat leak from the

inner shield to the outer shield
rh Effective radius of the heat leak area

F1→h Geometric view factor from the
test mass to the heat leak area

A1 Test mass surface area
A2 Inner shield surface area
Cp Specific heat of test mass
m Mass of silicon test mass
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2.1 Heat Model

Using radiative heat transfer equations as formulated in [2] and keeping geometric view
factors in mind, we get the following simplified model of our system,

mCp
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dt
= σA1

 T 4
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1

1
ϵ1
+ A1
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(
1
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− 1

) +
T 4
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1
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− 1
)
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 , (1)

where we assume that that the geometric factor from the test mass to the inner shield
F1→2 ≈ 1. The first term corresponds to the cooling term by the cold inner shield, while the
second term corresponds to the heating term due to the heat leaks.

For our preliminary analysis we will consider only the steady state region of the cool-down
curve. Thus, the ϵ1, ϵ2, ϵh, T2 and Th can be taken as constant. Moreover, it is experimentally
observed that Th realises steady state around 200 K almost every time. T1 is the output,
and θ̄ = {ϵ1, ϵ2, ϵh, rh} denotes the parameter vector for our system.

Note that the parameters Ah and F1→h are combined in one parameter that is rh. It gives
us the radius of the effective circular hole causing the heat leak. Knowing rh one can find
out the corresponding Ah and F1→h.

3 Error Propagation

3.1 Theory

To understand quantitatively the effect of other parameters on ϵ1, we perform error propa-
gation analysis. At steady state, we can get a function of ϵ1 in terms of other parameters.
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For parameters θ̄ = {ϵ1, ϵ2, ϵh, rh} = {θ̄i} for i = {1, 2, 3, 4}, the variance of the parameters
can be related by the following equation,

σ2
ϵ1
=

4∑
i=2

(
∂ϵ1
∂θ̄i

)2

σθ̄i . (3)

This equation is only applicable when the parameters {ϵ2, ϵh, rh} are uncorrelated to each
other. A more general relation for correlated variables as given in [3] is,

σ2
ϵ1
= g⊤Vg, (4)

in which the variance-covariance matrix is V, with the ith element in the vector g being ∂ϵ1
∂θ̄i

.

In fact equation (3) is just obtained by keeping V a diagonal matrix.
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3.2 Simulation Results

We assume that our parameters are uncorrelated and use equation (3) to analyse some trends.
We use the notation ∆ϵ1 and σϵ1 interchangeably.

The differentials are calculated at some estimate of the parameters. We take Th = 200K,
T2 = 100K and use the heat model (1) to find steady state value of T1. The variance of the
emissivities ϵ2 and ϵh are taken to be constant and equal to 0.05. The variance of rh is taken
to be 0.01m. The trends of uncertainty in ϵ1 as a function of other parameters are shown in
figures 2, 4 and 3.

Figure 2: Variation in uncertainty of ϵ1 with ϵ2

3.3 Analysis and Cryostat Design Changes

In figure 2, we see that uncertainty in ϵ1 decreases as ϵ2 increases. The blacker the surface
of the inner shield, the more certain will our measurement of ϵ1 be. It will also increase
coupling between the test mass and the inner shield, resulting in a more rapid cool-down of
the test mass to steady-state conditions. To this effect, we blackened the inner surface of
the inner shield and the cryostat’s aluminium foil lid with an Aquadag coating.

In figure 3 we see that the uncertainty in ϵ1 attains a minimum for a particular value of ϵh.
ϵh can roughly be considered the emissivity of the outer shield, which is made of aluminium.
The emissivity of aluminium is not known very accurately in literature for low-temperature
values. However, we can still try to minimize our uncertainty by changing ϵh and getting
close to the minima of ∆ϵ1.

In figure 4, the uncertainty in ϵ1 increases with rh, which intuitively makes sense. The heat
leaks add noise to the system, and we also do not have an accurate analytical model. The
plot recommends we close up the apertures in our system, thus effectively reducing rh. We
used aluminium sheet bits to close these apertures, leaving only two open, one for the RTD
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Figure 3: Variation in uncertainty of ϵ1 with ϵh

Figure 4: Variation in uncertainty of ϵ1 with rh
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sensors and one for the cold copper bar (which is used to cool the cold plate attached to the
inner shield walls). We further try to block these two apertures as much as possible using
aluminium foil.

4 Fisher Information Matrix

4.1 Theory

Assuming that the measurement noise as Gaussian, the Fisher matrix is constructed from the
likelihood function with the objective of maximising the curvature (or minimising uncertainty
in output) as derived in [4]. The output measurement,

yα = Hαxα + nα; α = 1, 2, · · · , N,

where Hα is the system model and xα is the input. The Fisher Matrix is given by,
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where Ĥα denotes the estimate of the system model, which is dependant on the parameters
θ̄ we choose. The Cramer-Rao bound gives a lower limit on the covariance matrix C and
relates it to the Fisher Matrix. For unbiased parameters,

C ≥ F−1,

where the inequality is understood to be element-wise. Our objective is to select those
parameters which maximize the Fisher information (and thus minimize variance-covariance).
We do this by either maximising the determinant of the Fisher Matrix or minimising the
variance of ϵ1 as that is the parameter of major interest.

4.2 Transfer function

Consider additional power input by a lamp shining on our test mass and modifying equation
(1) we get,

mCp
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= σA1

 T 4
2 − T 4

1

1
ϵ1
+ A1

A2

(
1
ϵ2
− 1

) +
T 4
h − T 4

1

1
ϵ1
+ A1

Ah

(
1
ϵh

− 1
)
+ 1

F1→h
− 1
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where P (t) is the heat power input as a function of time. We will linearize this system about
the steady state equilibrium and make a bode plot.
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Figure 5: Bode plot of the heat model transfer function

As we can see the cross-over frequency is very low, around 10−6 Hz. This means that any
effective excitation to the system would be at less than 10−6 Hz. This means that the time
constant of that signal would be about 5 days which is infeasible as we want our tests to
be done under 12 hours if possible. Thus, we can conclude that frequency domain analysis
of Fisher matrix may not give us a feasible input power signal. We verify this in the next
section.

4.3 Frequency Domain Analysis

We take one parameter at a time with ϵ1 and analyse its 2×2 Fisher matrix for one excitation
frequency. We add our prior information as well, to get the resultant Fisher matrix.

Without priors, the matrices end up giving 0 information (det(F) = 0) for one excitation
frequency. This is because we cannot extract two parameters by making only one measure-
ment. We need at least two measurements and hence two excitation frequencies. Thus,
we add the information from the priors on all parameters except ϵ1 to the corresponding
diagonal terms to get the result fisher matrix. This gives a det(F) ̸= 0 and we can proceed
with our analysis.

Analytically, the maxima of det(F) turns out to be at 0 Hz frequency. Figure 6 is plotted
for the Fisher Matrix of ϵ1 and ϵ2. A similar trend is observed for other combinations.
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Figure 6: Plot of det(F) vs frequency

We realise that frequency domain analysis is not particularly helpful for single frequency
excitation as the optimal frequency comes out to be a constant values signal in time domain.
This is already the case for our current system where the cold head cools the system at a
constant power.

4.4 Time Domain Analysis

We now try to get some useful information using time domain analysis taking our model yα
to be our T1 temperature measurement. If we take power to be our input signal and try
to find the best input to give which could maximise our Fisher Matrix, we realise that the
input does not come into the Fisher Matrix at all. This means that the control input does
not affect the covariance in the time domain.

Another, and hopefully more promising, way to approach the time domain analysis is to
create a new parameter, say T 0

1 . Assume our system has cooled down and is at steady state.
We install a heat lamp used to heat our test mass which is switched on during steady state.
The duration and power of the heating will be determined by what temperature T 0

1 we want
the test mass to reach. We can develop another Fisher matrix which captures this parameter
and optimise the information.

5 Future Work

With the data obtained from the cryostat with the latest design changes, I intend to work
on curve fitting the data to find the parameters and experimental configuration for our
simplified heat model (1).

I will also continue working on the time-domain analysis of the Fisher Matrix in the case
where a step heat excitation is provided for an interval. The parameters we control is how
much and how long we heat the test mass. This is done so that we obtain a cool-down curve
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for the test mass when all the other parts in the cryostat are at steady state temperatures.
This will allow us to study a cool-down curve at steady states where we possibly may get
more certain measurements of emissivity.
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