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1 Introduction

The triangular ring cavities in the Phase Sensitive Optomechanical Amplifier (PSOMA)
implement two lenses prior to the input mirror which serve as mode matching lenses to help
focus our beam into the cavities. Focusing the beam to the proper size so that it matches the
cavity eigenmode will create resonance within the cavity, and be considered mode matched.
However, in the process of analytical calculation, the resonances we expect are not the
resonances we find in practice, which leads us to believe that we are mode mismatched.
There are various approaches to try and solve this problem. Two possible solutions could be
creating a model using a thick lens, and considering the lens aberrations. If our models show
non-negligable change in upon use of thick lenses and account of aberrations, then these may
be factors to consider in future tabletop experiments.

2 Mode Matching Tolerances

Before we begin approximating with a thick lens, we first look at the tolerance the tabletop
cavity has to changes in positioning and focal lengths of the lenses. It is key to note here,
that we start off by simplifying our triangular cavity into a Fabry-Perot cavity, in which the
two end mirrors can be approximated as a single plano mirror at the end of the beam path,
as seen in Figure 1 on the following page. The round trip propegation that would occur in
a three mirror cavity is used to set the distance of our two mirror model. In this case, the
length of the two mirror cavity is half the propegation distance of our ring cavity.

Let us first examine the tolerance of our ring cavity in its current set up. In Figure 2, it
can be seen that in both the contour and heat map, we vary both lens 1 and 2 around their
respective resonance positions. One thing to note here is the major effects on resonance by
the movement of lens 2. It is not hard to convince yourself that this is the case, since lens 2
is directly in front of the first mirror of the cavity, giving it significant control of the beam
width entering the cavity.

We then transition from a two mirror model to a ring cavity model to determine accuracy
and effectivness the mode matching. The different models do not make a significant differ-
ence in the tolerances to change in lens positions, as seen in Figure 3. Again, it can be shown
that the second lens allows less room for movement as the first lens. This will be useful to
know in our attempts in solving the discrepency in mode matching that we find.
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Figure 1: Visual of approximation being made with the combination of lenses and mirrors.
Note the pd at the end of the cavity, used for sensing transmitted power. When cavity on
resonance, the power transmitted will be at a maximum.
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Figure 2: Two Mirror Model (a) A heat map of the power transmitted at varying lens
positions relative to the maximum power (which is resonance) of our two mirror model.
(b) Contour map of (a). Our current set up has dimesions: lens 1 = 0.0617m from laser,
0.10322m focal length, lens 2 = 0.3502m from laser, 0.15482m focal length.

We then transition from a two mirror model to a ring cavity model to determine accuracy
and effectivness the mode matching. The different models do not make a significant differ-
ence in the tolerances to change in lens positions, as seen in Figure 3. Again, it can be shown
that the second lens allows less room for movement as the first lens. This will be useful to
know in our attempts in solving the discrepency in mode matching that we find.

Another interesting plot to consider is a comparison of different combinations of previously
tested mode matching solutions. Each combination has a different set of focal lengths and
lens positions. Ideally, we want to use the configuration that has the most tolerance to
changes in position. Figure 4 shows a similar contour as seen in the previous two figures, yet
for this one, we consider multiple solutions of mode matching. If need be, we can pick from
one of these solutions to help give us more room for forgiveness in our attempts to mode
match the cavity.
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Figure 3: Three Mirror Model (a) A heat map of the power transmitted at varying lens
positions relative to the maximum power (which is resonance) of our three mirror model.
(b) Contour map of (a). Our current set up has dimesions: lens 1 = 0.0617m from laser,
0.10322m focal length, lens 2 = 0.3502m from laser, 0.15482m focal length.
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Figure 4: Here we have a comparison of different solutions of lens positions and focal lengths.
The area within each contour represents the area in which the cavity has 99.5 percent reso-
nance or more.

3 Thick Lenses

A begining model of thick lenses is already in progress. First, a thin lens ABCD matrix cal-
culation for a laser propegating through two lenses and a two mirror cavity has been made,
and tested for accuracy. Though the thick lens ABCD calculation still has some debugging
to do at its current stage, it is not difficult to implement a thick lens.

Figure 5 shows us how a beam propegates through such a lens. The initial radius of curvature
acts as a thin lens, then the middle of the lens carries the beam through a medium with
some index of refraction, and then the back surface of the lens acts as another thin lens. The
difference in focal length can cause us to fall out of resonance on our cavity. For calculation
purposes, instead of having a matrix (

1 0
−1
f

1

)
We end up with the matrices:(

1 0
n2−n1

R2
1

)(
1 d
0 1

)(
1 0

n1−n2

R1
1

)
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Figure 5: Diagram of a ray propegates through a thick lens. Notice the small change focal
length of the lens, C1 to F ′′

Where d is the thickness of the lens, R1 and R2 are the radii of curvature of the front and
back ends respectively, and n1 and n2 are the indices of refraction of the air and mirror
respectively.

4 Lens Aberrations and Third Order Theory

Another issue that may be contributing to this discrepency in our mode matching are lens
aberrations. Lens aberrations can come in a variety of different forms, and each can create
higher order modes that do not resonate in the cavity. This section is to provide a basic
introduction to lens aberrations by using ray tracing figures and paraxial beams. In the next
section, lens aberrations with Gaussian beams will be discussed.

Lens aberrations may be due to the curvature of the lens not being completely accurate for
image focusing. As a result, the image can become blurry, and we can see varying focal
points for varying rays of light. This can be seen in Figure 6a, as there are multiple points
along the propegation axis where the light comes into focus.

One key thing to note is that the higher up the beam comes through the lens, the larger
the distance is between its focusing point, s′h, and the paraxial focal point f ′. Under ideal
circumstances, the distance of the image once passing through a lens can be modeled with
only a first order approximation of sine, since the angle θ shown in Fig 6b is small.

However, if we picture this point source as a beam waist of gaussian beam, we see that as
the beam diverges further, it passes through the lens with greater width, causing our value
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Figure 6: From Fundamentals of Optics Francis A. Jenkins and Harvey E. White. Chp. 9
(a) Diagram of how lens aberrations occur, and how they can be perceived. (b) Notice here
the Longitudinal Spherical Aberrations (Long. SA) and Latitudinal Spherical Aberrations
(Lat. SA), which come in to play in the beam being misaligned within the cavity.
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of h and θ in this figure to become large enough to need third order approximation of the
expantion of sine.

sin(θ) ≈ θ − θ3

3!
(1)

Now in reality, θ for our table top experiment will still be very small, yet it may be useful
to still use third order approximation anyways considering how precise we need our cavity
to be. When using third order to solve for the image length, we end up with:

n

s
+

n′

s′h
=

n′ − n

r
+

[
h2n2r

2f ′n′

(
1

s
+

1

r

)2(
1

r
+

n′ − n

ns

)]
(2)

We see that as h increases, we get a larger right hand side of the equation, meaning that
s′h gets smaller on the left side to compensate, making the lens aberration greater. This
tells us that if the laser beam is wide enough upon entering the lens, then lens aberrations
may cause higher order modes in the cavity that do not align to the resonance conditions
we originally plan for.

5 Analyzing Aberrations

All the models we have considered are rays. It is difficult to create a numerical analysis
of lens aberrations given in the pervious section with Gaussian beams, since they diverge
with curvature. To account for this, we can shift the focus of the project analyze the beam
intensity distribution after propegating through optical surfaces.

Doing this will require using a Gaussian beam field equation, and using a mode coupling
formula.

The general form of a Gaussian beam is

E(x, y, z) = E0e
−i(ωt−kz) ω0

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
eiψ(z) (3)

Where k is the wave number, z is the position on the propegation axis, R(z) is the Gaussian
beam radius of curvature at z, ω0 is the beam waist, ω(z) is the beam width at z, and psi
is the Gouy phase. We can define u as:

u(x, y, z) =

√
2

π

1

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
eiψ(z) (4)

Which represents the spatial properties of the beam. The equation, u(x, y, z) is a solution to
the paraxial wave. However, when a beam is not perfectly aligned or mode matched within
the cavity, there can be higher order modes that propegate in the cavity.
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These higher order modes are families/sets of solutions to the paraxial wave equation. The
two types of modes possible are Hermite-Gauss (HG) modes, and Laguerre-Gauss (LG)
modes. Currently, my research has focused only on HG modes, which have the form.

unm =
(
2n+m−1n!m!π

)−1 1

ω(z)
e(i(n+m+1)ψ(z))Hn

√
2x

ω(z)
Hm

√
2y

ω(z)
e

(
−ik x2+y2

2R(z)
−x2+y2

ω(z)

)
(5)

In which the polynomials Hn and Hm have the general form:

H0 = 1

H1 = 2x

H2 = 4x2 − 2

H3 = 8x3 − 12x

After a beam has propegated, we can express it with a summation of all higher order modes:

u(x, y, z) = Σcnmunm(x, y, z) (6)

In which cnm is a coefficient of amplitude and phase of each mode.

Since each all HG unm represent an infinite set of orthonormal basis vectors (once normal-
ized), inner product of the complex conjugate, which yeilds:∫∫ ∞

−∞
unmu

∗
n′m′dxdy = δnn′δmm′ (7)

This property allows us to find coupling coefficients between different modes.

As the beam propegates through an optical element, perturbations/imperfections in the sur-
face of the optic can cause what was once a 00 mode to spill in to higher order modes, and
have the resulting beam become a superposition of these modes. This is a lens aberration
for a Gaussian beam, since the width of the beam at the focal point is not the width to be
expected. The amplitude of each mode is determined by the coupling coefficients.

The surface of an optic (in this case it is beneficial to use a lens), is modeled by an equation
Z(x, y) which describes the height Z of an optic as a function of x and y, which run perpen-
dicular to the axis of beam propegation.

Using this, we can construct a formula to determine the coupling coefficients:

cnm =

∫∫ ∞

−∞
unmu

∗
n′m′e(2ikZ(x,y))dxdy (8)

After implementing this into code, and constructing a model lens surface of arbitrary curva-
ture, I generated an intensity distribution map of a Gaussian beam before entering the lens,
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Figure 7: (a) An intensity distribution of a 00 order Gaussian beam as a function of positions
x and y. (b) Intensity distribution of a superposition of higher order HG Gaussian beams
with coupling coefficients.

and after entering the lens. Though the results are still a work in progress, the overall idea
that the post-lens map is a superposition of modes can easily be seen in figure 7b.

It is clear that there is no clar Gaussian beam distribution, even with a sum of all of these
modes. This is (likely) the affect of a lens aberration on a Gaussian beam. These types of
modes can create a problem with resonances in not just the PSOMA cavity, but in the LIGO
interferometer as well.

6 Next Steps

Once we get a better idea of how to run this beam simulation, the next immediate steps will
be to test different Z functions to see how different surfaces affect beams. The goal will be
to try and model something that gives us a near spherical surface towards the center of the
optic, but then becomes less and less spherical as we get closer to the edge.

Once that is done, we can then move into modeling these surfaces within the analytical
simulation to try and create a q factor that will match the PSOMA ring cavity eigenmode.
Once we have determined a surface that works, we can then do a mode matching tolerance
with it, by varying its respective position, just as done in the beginning sections of this paper.

Another direction that may also be possible to go into is using actual LIGO mirror surface
maps to try and model how a Gaussian beam actually propegates through it, and determine
whether or not aberrations should be taken into account.
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