
The next generation of low-latency data distribution
and stream processing for LIGO

Jameson Rollins

CI Compass meeting
March 22, 2022

Introduction

LIGO is embarking on an effort to modernize, improve, and extend it’s
low-latency data delivery and stream processing systems.

LIGO is acknowledging the importance of the low-latency search/alert pipeline to
our overall science goals, and is making a significant investment in the components
of the system it is responsible for.

2/23

Background

First “low latency” searches developed for Initial
LIGO’s sixth science run (S6) in 2009. Came to
fruition in Advanced LIGO, leading to the
multi-messenger observation of GW170817 →

Our ability to tell astronomers where to look for
exceptional transient electromagnetic events is
now maybe our most important reason d’être.

Direct correlation between the speed with which
we can issue alerts and the quality of the science.

3/23

Overview of low-latency data flow

4/23

raw data
acquisition

IFO

raw data stream from DAQ:
~20k "fast" channels (2-16 kHz)
~200k "slow" channels (16 Hz)

1/16 second block size
~70 MBps

Overview of low-latency data flow

5/23

search

analysis

analysis

arbitrary number of
analysis applications
produce asynchronous
event streams or other

data products

raw data
acquisition

IFO

raw data stream from DAQ:
~20k "fast" channels (2-16 kHz)
~200k "slow" channels (16 Hz)

1/16 second block size
~70 MBps

Overview of low-latency data flow

6/23

low-latency
alerts

search

analysis

analysis

arbitrary number of
analysis applications
produce asynchronous
event streams or other

data products

raw data
acquisition

IFO

raw data stream from DAQ:
~20k "fast" channels (2-16 kHz)
~200k "slow" channels (16 Hz)

1/16 second block size
~70 MBps

Overview of low-latency data flow

7/23

subtraction

low-latency
alerts

search

analysis

analysis

arbitrary number of
analysis applications
produce asynchronous
event streams or other

data products

calibration

data
quality

monitor

stream processing applications
produce derived data channels

continuous streams of
raw and derived data

raw data
acquisition

IFO

raw data stream from DAQ:
~20k "fast" channels (2-16 kHz)
~200k "slow" channels (16 Hz)

1/16 second block size
~70 MBps

Overview of low-latency data flow

8/23

subtraction

low-latency
alerts

search

analysis

analysis

arbitrary number of
analysis applications
produce asynchronous
event streams or other

data products

calibration

data
quality

monitor

stream processing applications
produce derived data channels

continuous streams of
raw and derived data

raw data
acquisition

IFO

raw data stream from DAQ:
~20k "fast" channels (2-16 kHz)
~200k "slow" channels (16 Hz)

1/16 second block size
~70 MBps

low-latency stream processing

Overview of low-latency data flow

9/23

subtraction

calibration

data
quality

monitor

raw data
acquisition

IFO

subtraction

calibration

data
quality

monitor

raw data
acquisition

IFO

subtraction

calibration

data
quality

monitor

raw data
acquisition

IFO

low-latency
alerts

search

analysis

analysis

transfer to central location
for coherent searches

Existing stream processing and data distribution

stream processing: Data Monitoring Tool (DMT) receives data from the DAQ
in one-second long frames. Data passed between elements via shared memory.
Applications must run in special environment, on a single machine.

low-latency data distribution: Derived data frames copied out of shared
memory and published in bulk into Kafka for distribution to cluster nodes. Node
Kafka consumers copy frame files back into shared memory for processing by
searches.

bulk offline access: Frame files on shared file systems.

general access: Network Data Service (NDS) provides network access (via
custom protocol) to all offline data, and some online channels, via a simple
interface. (Much work has gone into improving this system in recent years.)

10/23

Time for an update

These existing systems have evolved only incrementally over 20+ years,
accumulating much technical debt along the way.

The data distribution and stream processing domains have also obviously evolved a
lot in recent years, so we should now be able to leverage more modern existing
projects.

We fortunately have a mandate from the LIGO laboratory for a completely green
field re-imagining of the whole space.

11/23

Time for an update

Desired features:

• Fast: get data to the processes that need it as fast as possible.
• Scalable: need to accommodate hundreds of producers, thousands of

consumers.
• Distributed: accessible from all relevant computing centers.
• Flexible/Extensible: simple plug-and-play architecture.
• Usable: low barrier to entry for users.

12/23

User centered design

Starting the design process by considering the interfaces that should be provided
to users.

• Simple to subscribe to any raw or derived channel from anywhere.
• Simple to produce new derived channels that are available to any other

application in the system.
• Archive derived channels as first class data products alongside with raw

channels.
• Simple playback of both raw and derived channels from the archive.
• Simple to create and manage stream processing elements.

13/23

Prototype interface for users

A simple interface to read data:

for data_block in iter_data (channels):
my_algorithm (data_block)

The existing NDS system provides an interface essentially identical to this.

This same interface should work for both online and offline (archived) data (with
the addition of GPS start/stop times).

14/23

DR
AF
T/

EX
AM
PL
E

Prototype interface for users

A simple interface to produce derived channels into the system:

producer = register_producer (my_channel)

while True:
new_data_block = my_data_generator ()
producer . publish (new_data_block)

15/23

DR
AF
T/

EX
AM
PL
E

Prototype interface for users

Putting them together for a stream processor:

producer = register_producer (my_channel)

for data_block in iter_data (channels):
new_data_block = my_data_transform (data_block)
producer . publish (new_data_block)

16/23

DR
AF
T/

EX
AM
PL
E

Straightforward development→production life cycle

It should easy to develop and test new stream processing applications without a
lot of overhead or coordination with administrators or gatekeepers.

Once applications are mature/reviewed/etc., it should be straightforward to
“promote” them into production, so that:

• their output derived channels are acquired into the production data
management system and made available to other production stream
processing applications and via the archive,

• the application processes themselves are supervised and monitored by a
production process management system.

17/23

Current status

Evaluating existing technologies, and prototyping some concepts.

Message passing frameworks:
• Kafka
• MQTT
• Redis

Time series and OLAP databases:
• Materialize
• ClickHouse
• InfluxDB
• TimescaleDB

Most stream processing frameworks seem overly integrated for our needs (all
processing elements in a single application).

18/23

Current status

A new high-speed, high-throughput connection between the DAQs and the site
clusters, and recent refactorizations/improvements of the DAQ software, provide a
basis for the new system.

All channels from the DAQ are now being delivered to the site LDAS cluster with
a 1/16 second stride.

First real application: The LHO NDS2 server is currently serving fast online
streams (16 Hz stride) of every channel acquired from H1. Working on getting this
setup at LLO as well.

19/23

Major challenge: channel synchronization

Raw and derived channels will be produced with very different latencies. But
clients want the channel data GPS synchronized. How do we synchronize multiple
data streams produced at different latencies?

Consumer application developers should to not have to worry about buffering.

This issue has a large effect on the underlying architecture of the system.

20/23

Major challenge: channel synchronization

Client-side buffering
Client interface receives all requested channels as they come, buffering ap-
propriately until synchronized data blocks can be provided to the applica-
tion.

Flexible, minimal server requirements, but puts a lot of burden on the
client.

Server-side buffering
All data is inserted into some sort of database, clients interact with a service
that provides synchronized data buffers (existing NDS model).

A service for providing archived data (synchronized) will need to exist
anyway...

21/23

Development roadmap

Kafka with message index based on GPS of message data?

Broker synchronization?

22/23

Development roadmap

Want new system in production for O5 (2025)

Requires production readiness at the end of O4 (early 2024).

Hope to have something ready for testing at the end of this year
(maybe some usage during O4??).

23/23

