An Issue with PE Results Using Bilby and TD Approximants (And Resolution)

Mark Hannam, Charlie Hoy, Jonathan Thompson

CBC call: 15/02/2022 DCC: G2200203 CARDIFF

PRIFYSGOL

Setup

Our study involved performing parameter estimation on a set of NR injection files. We,

- Used PyCBC to generate NR injection gwfs for H1, L1, V1 in zero-noise
- Used LALInference MCMC and pBilby for the inference. Use the same settings where possible
- Used f_low = 20Hz and f_final = 896Hz to remain consistent with GWTC-3
- Recovered with IMRPhenomXPHM, IMRPhenomTPHM and NRSur7dq4 using only I<4 multipoles

Zero-noise NR injection

Excellent agreement between pBilby and LALInference for FD models (IMRPhenomXPHM). This is expected from the pBilby review: see e.g. <u>this page</u>

See bias in the total mass from pBilby with TD models. Only LALInference recovers the injected parameters

Tested various settings, all gave similar posteriors

Increased number of live points from 1500 to 2000, increased nact from 20 to 50, increased maxmcmc from 5000 to 20000. Not a convergence issue.

Compare waveforms generated with Bilby and LALSimInspiralFD

Issue explained

108	<pre>def create_frequency_series(sampling_frequency, duration):</pre>	36
109	""" Create a frequency series with the correct length and spacing.	36
110		36
111	Parameters	36
112		36
113	<pre>sampling_frequency: float</pre>	36
114	duration: float	36
115		36
116	Returns	37
117		37
118	array_like: frequency series	37
119		57
120		

121 __check_legal_sampling_frequency_and_duration(sampling_frequency, duration)
122 number_of_samples = int(np.round(duration * sampling_frequency))
123 number of frequencies = int(np.round(number of samples / 2) + 1)

```
123 number_of_frequencies = int(np.round(number_of_samples / 2) + 1)
124
```

```
return np.linspace(start=0,
```

125

126

127

stop=sampling_frequency / 2,
num=number_of_frequencies)

Bilby assigns a frequency array according to sampling frequency and duration. This means that delta_f = 0.125Hz for our setup Issue resolved if f_max= sampling_frequency / 2 or if frequency array adjusted for change in delta_f from SimInspiralFD

<pre>if lalsim.SimInspiralImplementedFDApproximants(approximant): wf_func = lalsim_SimInspiralChooseFDWaveform</pre>
else:
wf_func = lalsim_SimInspiralFD
try:
hplus, hcross = wf_func(
<pre>mass_1, mass_2, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y,</pre>
<pre>spin_2z, luminosity_distance, iota, phase,</pre>
<pre>longitude_ascending_nodes, eccentricity, mean_per_ano, delta_frequency, start_frequency, maximum_frequency, reference_frequency,</pre>
waveform_dictionary, approximant)

Bilby passes delta_f = 0.125Hz, start_frequency = 20Hz, maximum_frequency = 896Hz, and LALSimInspiralFD outputs strain sampled *at a different* delta_f = 0.109375Hz. Bilby does not correct for this change in delta_f

Issue explained

In this example:

hp_eob_fmax896.deltaF=0.109375Hz hp_eob_fmax1024.deltaF=0.125Hz

```
laldict_eob = lal.CreateDict()
q=1./0.28
Mtotal=38.4
m1 = q * Mtotal / (1.+q)
m2 = Mtotal / (1. + q)
distance=740*1e6*1al.PC SI
siminspiralfd eob params = {
    'm1':m1*lal.MSUN SI,
    'm2':m2*lal.MSUN SI,
    'S1x':0.1, 'S1y':0.1, 'S1z':0.1,
    'S2x':0., 'S2y':0., 'S2z':0.,
    'distance':distance,'inclination':0.,'longAscNodes':0.,
    'eccentricity':0., 'meanPerAno':0., 'deltaF':0.125,
    'f min':10.,'f ref':20.,'phiRef':0.,
    'LALparams':laldict eob,'approximant':ls.SEOBNRv4P
```

```
hp_eob_fmax896, _ = ls.SimInspiralFD(f_max&96.,**siminspiralfd_eob_params)
hp_eob_fmax1024, _ = ls.SimInspiralFD(f_max&024.,**siminspiralfd_eob_params)
```

```
print(hp_eob_fmax896.deltaF)
print(hp eob fmax1024.deltaF)
```

Rerun with consistent Bilby and LALSimInspiralFD

We now see excellent agreement between LALInference and pBilby for the NRSur7dq4 case. We would expect to see the same level of improvement for all TD models

Our "quick" fix is not optimised and should not be used as a solution to the problem.

Summary

- We see a difference in the inferred posteriors between LALInference and pBilby for TD models but we see excellent agreement for FD models.
- When f_final does not equal sampling_frequency / 2 there is a potential discrepancy between the delta_f used in LALSimInspiralFD and the delta_f used in the Bilby frequency array.
- Correcting for the change in delta_f produces excellent agreement between LALInference and pBilby for TD models.
- Does not affect FD models because ChooseFDWaveform outputs the data at the given input delta_f.
- Could be an issue for some O3 results if Bilby ran TD approximants. Could also be an issue in O4 for TD models if frequency spacing isn't made consistent.