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Given data d for a single event, let’s assume that we’ve done standard parameter estimation to obtain a posterior
ppe(θ|d) on a parameter θ of this particular event. To do parameter estimation, we’ve assumed a default prior ppe(θ).
Additionally, given a set of data {di} for a number of events (including our single event of interest), we’ve obtained
posteriors p(Λ|{d}) for a collection of hyperparameters Λ parametrizing the ensemble distribution p(θ|Λ). Using this
newfound information about the ensemble distribution of θ, our goal is to obtain a reweighted posterior p(θ|{d}) for
our single event, marginalized over possible values of Λ.

Let’s begin with the joint posterior on the parameters {θ} of all our events and Λ:

p({θ},Λ|{d}) = p(Λ)
∏
i

p(di|θi)p(θi|Λ)

ξ(Λ)
, (1)

where ξ(Λ) is the population-averaged detection efficiency. If we were interested only in Λ, we might marginalize
Eq. (1) over all θi, leaving

p(Λ|{d}) = p(Λ)
∏
i

∫
dθi p(di|θi)p(θi|Λ)

ξ(Λ)
, (2)

Instead, we’ll marginalize Eq. (1) over Λ and over all parameters θi 6=j , leaving only a posterior on the particular θj of
interest that has been “reweighted” from the initial prior to a new prior informed by our population fit:

p(θj |{d}) =

∫
dΛ dθi 6=j p({θ},Λ|{d})

=

∫
dΛ dθi 6=j p(Λ)

∏
i

p(di|θi)p(θi|Λ)

ξ(Λ)

=

∫
dΛ

p(dj |θj)p(θj |Λ)

ξ(Λ)
p(Λ)

∏
i 6=j

∫
dθip(di|θi)p(θi|Λ)

ξ(Λ)

 ,
(3)

where in the last line I’ve pulled the factors p(dj |θj)p(θj |Λ)/ξ(Λ) for our event of interest out of the product. In the
final line of Eq. (3), it is (hopefully) clear that no double-counting is occurring: the quantity in square brackets, which
achieves the population reweighting, explicitly does not depend on the event j that we seek to reweight.

In practice, though, Eq. (3) is not terribly convenient to work with. Reweighting each of N events in a catalog would
necessitate running our population inference N times, each time leaving out a different single event. Let’s proceed
instead by both multiplying and dividing the integrand of Eq. (3) by the evidence integral

∫
dθ′jp(dj |θ′j)p(θ′j |Λ):

p(θj |{d}) =

∫
dΛ

p(dj |θj)p(θj |Λ)

ξ(Λ)
p(Λ)

∏
i 6=j

∫
dθip(di|θi)p(θi|Λ)

ξ(Λ)

 ∫ dθ′jp(dj |θ′j)p(θ′j |Λ)∫
dθ′jp(dj |θ′j)p(θ′j |Λ)

=

∫
dΛ

p(dj |θj)p(θj |Λ)[ ∫
dθ′jp(dj |θ′j)p(θ′j |Λ)

]p(Λ)

∏
i 6=j

∫
dθip(di|θi)p(θi|Λ)

ξ(Λ)

 ∫ dθ′jp(dj |θ′j)p(θ′j |Λ)

ξ(Λ)

=

∫
dΛ

p(dj |θj)p(θj |Λ)[ ∫
dθ′jp(dj |θ′j)p(θ′j |Λ)

]p(Λ)

[∏
i

∫
dθip(di|θi)p(θi|Λ)

ξ(Λ)

]

=

∫
dΛ

p(dj |θj)p(θj |Λ)[ ∫
dθ′jp(dj |θ′j)p(θ′j |Λ)

]p(Λ|{d}),

(4)

using Eq. (2) for the marginalized posterior on Λ. In contrast to Eq. (3), which depended on the posterior for Λ
using all events other than j, we now have an expression that depends on the posterior p(Λ|{d}) obtained using all
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events, even the event j we are seeking to reweight. The cost of this simplification, however, is that we’ve picked
up an additional evidence integral

[∫
dθ′jp(dj |θ′j)p(θ′j |Λ)

]
appearing in the denominator of Eq. (4). This factor is

not a constant – it depends on Λ, and so we cannot factor it outside of the integral and discard it as a constant of
proportionality. Its presence, though, is exactly what prevents us from double counting information when reweighting
θj using a posterior p(Λ|{d}) that was itself informed by event j. More on this, however, below.

As usual, in practice we don’t have direct access to the likelihood p(d|θ) (now dropping the subscript j for conve-
nience) but only to the default posterior ppe(θ|d) mentioned above. These quantities are related via

p(d|θ) =
ppe(θ|d)ppe(d)

ppe(θ)
, (5)

where ppe(d) is the evidence obtained using our default prior. Substituting into Eq. (4),

p(θ|{d}) =

∫
dΛ

ppe(θ|d)ppe(d)

ppe(θ)

p(θ|Λ)[ ∫
dθ′p(dj |θ′)p(θ′|Λ)

]p(Λ|{d})

∝
∫
dΛ ppe(θ|d)

p(θ|Λ)

ppe(θ)

p(Λ|{d})[ ∫
dθ′p(d|θ′)p(θ′|Λ)

] . (6)

Here, ppe(d) is a proper constant, and so we’ve discarded it in the second line.
We still have the pesky evidence integral in Eq. (6), which currently make this expression hard to apply to the

problem of reweighting a set of discrete posterior samples. Fortunately, a loophole exists whereby we can effectively
ignore this problematic term. Note that the conditional probability p(θ|Λ, {d}) is defined by

p(θ|{d}) =

∫
dΛ p(θ|Λ, {d}) p(Λ|{d}). (7)

Comparing Eqs. (6) and (7), we see that

p(θ|Λ, {d}) ∝ ppe(θ|d)
p(θ|Λ)

ppe(θ)

[∫
dθ′p(d|θ′)p(θ′|Λ)

]−1
. (8)

Since we have conditioned on Λ, however, the evidence integral is now a true constant of proportionality – we can
happily ignore it as long as Λ is fixed, yielding

p(θ|Λ, {d}) ∝ ppe(θ|d)
p(θ|Λ)

ppe(θ)
. (9)

This fact suggests the following algorithm for producing a reweighted set of posterior samples, giving an initial set
{θ} from parameter estimation and a set of hyperparameter samples {Λ} (inferred with a catalog that included the
event of interest):

1. Randomly select a hyperparameter sample Λi ∈ {Λ}

2. Having conditioned on this Λi, we can ignore the evidence integral as in Eq. (9), and assign every θj ∈ {θ} a
draw probability

wj ∝ ppe(θj |d)
p(θj |Λi)

ppe(θj)
, (10)

normalizing to
∑

j wj = 1.

3. Finally, select and store a single such θj according to the probability weights wj .

4. Repeat Steps 1-4 until the desired number of reweighted samples are obtained!


	Reweighting Single Event Posteriors with Hyperparameter Marginalization [5pt] LIGO DCC No. T2100301

