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Given data d for a single event, let’s assume that we’ve done standard parameter estimation to obtain a posterior
Ppe(0|d) on a parameter 6 of this particular event. To do parameter estimation, we’ve assumed a default prior pye(6).
Additionally, given a set of data {d;} for a number of events (including our single event of interest), we’ve obtained
posteriors p(A|{d}) for a collection of hyperparameters A parametrizing the ensemble distribution p(6|A). Using this
newfound information about the ensemble distribution of 6, our goal is to obtain a reweighted posterior p(6|{d}) for
our single event, marginalized over possible values of A.

Let’s begin with the joint posterior on the parameters {6} of all our events and A:

p({6}, Al{d}) = p(A) H W,

where £(A) is the population-averaged detection efficiency. If we were interested only in A, we might marginalize
Eq. over all 6;, leaving
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Instead, we’ll marginalize Eq. over A and over all parameters 0;~;, leaving only a posterior on the particular 6; of
interest that has been “reweighted” from the initial prior to a new prior informed by our population fit:
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where in the last line I've pulled the factors p(d;|0;)p(6;|A)/&(A) for our event of interest out of the product. In the
final line of Eq. , it is (hopefully) clear that no double-counting is occurring: the quantity in square brackets, which
achieves the population reweighting, explicitly does not depend on the event j that we seek to reweight.

In practice, though, Eq. is not terribly convenient to work with. Reweighting each of N events in a catalog would
necessitate running our population inference N times, each time leaving out a different single event. Let’s proceed
instead by both multiplying and dividing the integrand of Eq. by the evidence integral [ d6p(d;|0;)p(6}|A):
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using Eq. for the marginalized posterior on A. In contrast to Eq. , which depended on the posterior for A
using all events other than j, we now have an expression that depends on the posterior p(A|{d}) obtained using all
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events, even the event j we are seeking to reweight. The cost of this simplification, however, is that we’ve picked
up an additional evidence integral [ [ dﬂép(djw;-)p(ﬁﬂl\)] appearing in the denominator of Eq. (@). This factor is
not a constant — it depends on A, and so we cannot factor it outside of the integral and discard it as a constant of
proportionality. Its presence, though, is exactly what prevents us from double counting information when reweighting
6, using a posterior p(A|{d}) that was itself informed by event j. More on this, however, below.

As usual, in practice we don’t have direct access to the likelihood p(d|€) (now dropping the subscript j for conve-
nience) but only to the default posterior ppe(6|d) mentioned above. These quantities are related via
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where ppe(d) is the evidence obtained using our default prior. Substituting into Eq. ,
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Here, ppe(d) is a proper constant, and so we’ve discarded it in the second line.

We still have the pesky evidence integral in Eq. @, which currently make this expression hard to apply to the
problem of reweighting a set of discrete posterior samples. Fortunately, a loophole exists whereby we can effectively
ignore this problematic term. Note that the conditional probability p(8|A, {d}) is defined by
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Comparing Eqgs. @ and , we see that
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Since we have conditioned on A, however, the evidence integral is now a true constant of proportionality — we can
happily ignore it as long as A is fixed, yielding
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This fact suggests the following algorithm for producing a reweighted set of posterior samples, giving an initial set

{6} from parameter estimation and a set of hyperparameter samples {A} (inferred with a catalog that included the
event of interest):
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1. Randomly select a hyperparameter sample A; € {A}

2. Having conditioned on this A;, we can ignore the evidence integral as in Eq. @, and assign every 6, € {0} a
draw probability
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normalizing to »_,w; = 1.
3. Finally, select and store a single such ¢; according to the probability weights w;.

4. Repeat Steps 1-4 until the desired number of reweighted samples are obtained!
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