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While many individual gravitational wave signals have been detected, researchers are still search-
ing for a stochastic gravitational wave background. This superposition of weak, unresolved
gravitational-wave signals could hold a wealth of both astrophysical and cosmological information.
Studying both the isotropic and anisotropic components of the background at current detector sen-
sitives could provide a measure of matter distributions and large-scale structure in the Universe.
Eventually these searches may provide concrete evidence of inflation and act as a primordial analog
to the Cosmic Microwave Background. This project will focus on developing a data folding algo-
rithm for the stochastic gravitational wave background analysis pipeline. With the implementation
of data folding, anisotropic directional searches can be carried out far more efficiently. This report
will detail the underlying physics, overall direction of the project, and progress so far.

I. INTRODUCTION

In 2015, LIGO made the first direct detection of a grav-
itational wave (GW) signal. Since then, interferometers
have measured many more signals from black hole and
neutron star binaries. These binaries must either have
very high mass or be very compact in order to be de-
tected by current ground-based detectors. However, the
sky is filled with gravitational wave signals below detec-
tion thresholds that, when analyzed as a whole, contain a
great deal of information. These signals are unresolved,
numerous, and best described according to probability
distributions, hence they are known as the stochastic
gravitational wave background (SGWB).

SGWB searches can be performed as either all-sky
or directional searches. Isotropic searches model the
background with no directional dependence and can be
used to characterize the average GW signal in the uni-
verse. Directional searches account for potential varia-
tion across the sky and can be used to map anisotropies
in the GW distribution. Due to the Earth’s rotation,
ground-based detectors measure a signal from each part
of the sky over a sidereal day.

This project is focused on developing a key component
of LIGO’s SGWB pipeline: data folding. Because LIGO
data is periodic over one day, we can compress the time
series information we measure. By folding gravitational
wave data over one sidereal day, we can vastly improve
the efficiency of current and future directional stochastic
searches.

The contents of this proposal will be presented as fol-
lows. In Section 2, I present a brief overview of the mo-
tivations for stochastic gravitational wave searches. In
Section 3, I provide the necessary background, starting
with gravitational waves in general and then going over
stochastic signals and their measurement and analysis.
Section 4 presents the goals and objectives of this specific
project. Section 5 shows the data folding approach, mod-
eled after the work in [1]. Section 6 details my progress

in the first 3 weeks of the program. Finally, in Section
7, I describe the challenges I’ve faced so far and what
challenges I expect moving forward.

II. MOTIVATIONS

Gravitational waves allow researchers to probe the Uni-
verse without relying on electromagnetic signals. This
can be incredibly useful, providing independent measure-
ments of electromagnetic sources and new measurements
of GW sources. High signal-to-noise measurements can
provide insight into individual events, but the stochastic
gravitational wave background can provide information
about large scale structure and cosmology.

The earliest electromagnetic signals come from the
time of last scattering, at a redshift of around z = 1100,
and comprise the Cosmic Microwave Background (CMB)
[2]. Before then, the universe was too opaque for photons
to travel very far. However, gravitational waves were able
to propagate all the way back in the early moments of
the universe. Eventually, stochastic gravitational wave
searches may be able to find direct evidence of inflation
and provide information about early universe phase tran-
sitions.

Current detectors lack the sensitivity to measure the
comparatively weak signals from these cosmological back-
ground events, but they can be used to study lower red-
shift astrophysical sources. These sources are expected
to be distributed somewhat anisotropically. A direc-
tional search looking at these anisotropies in the SGWB
can probe at the universe’s underlying mass distribution.
In particular, these searches can provide strong tests of
the expected distribution of compact binary coalescences
(CBCs)[3].



2

III. BACKGROUND

A. Gravitational Waves

Gravitational waves manifest as strains, or changes in
length per unit length. They arise when the quadrapole
mass moments of objects, Iuv have a time dependence
[4]. This is why the direct detections already made in-
volve compact mass objects inspiraling. In the context
of general relativity, gravitational waves can be thought
of as linear perturbations of the background metric guv.
Assuming that the gravitational field is weak and non-
stationary, one can show that the solution to the Einstein
field equations for such a perturbation can be constructed
as a plane wave, propagating at the speed of light [5].

Currently, the primary method for detecting gravita-
tional waves is ground-based interferometry. The ba-
sic setup is that of a Michelson interferometer. A laser
beam is split along two long, perpendicular arms and
reflected off of mirrors, combining again at a photo-
detector. Gravitational waves strain the travel distance
along the arms, creating an optical phase difference be-
tween the two beams. With a new phase difference,
the electromagnetic laser waves interfere slightly differ-
ently, manifesting in a change in light intensity at the
frequency of the wave, which one can directly measure.
From these measurements, one may be able to determine
the frequency, amplitude, direction, and polarization of
the wave. Gravitational wave strains are incredibly small,
so interferometers have to be extremely sensitive to de-
tect them. There are many sources of noise that also
make detection difficult, including seismic activity and
Brownian motion of the detector mirrors [4].

B. Stochastic Signals

Due to the low signal-to-noise nature of gravitational
waves, only the most extreme GW events can be directly
detected. However, these types of events constitute a
tiny fraction of all gravitational wave signals; the rest
comprise the stochastic gravitational wave background.
These stochastic signals are weak, independent, random,
and unresolved. The distinction between a stochastic
and resolvable signal can be unclear, as it may depend
on modelling decisions or the precision of a detector.
A signal can be operationally defined as stochastic if a
Bayesian model selection calculation prefers a stochas-
tic signal model over any deterministic signal model [2].
There are two broad categories of stochastic GW signals,
based on the nature of the GW source: astrophysical and
cosmological. Astrophysical signals occur at low redshift
and are stochastic in the limit that number of sources N
is very high. They are mainly comprised of compact bi-
nary systems. Cosmological signals arise from processes
in the early Universe. They can be described stochasti-
cally as a result of the assumed homogeneity and isotropy
of the universe. All inflationary models have some grav-

itational wave byproducts. Early universe phase transi-
tions are also predicted to produce detectable signals [6].
LIGO does not currently have the sensitivity to measure
weak cosmological signals, so this analysis will be aimed
at measuring the astrophysical foreground.

A key parameter of interest in SGWB searches is Ωgw,
the fractional energy density of gravitational waves in the
universe. The parameter can be expressed as Ωgw(f, n̂),
where f is the wave frequency and n̂ is the direction [2].
Searches performed on LIGO’s first three runs have not
detected a stochastic background, but have set upper lim-
its on Ωgw. These limits fall in line with predictions based
on the expected distribution of compact binary systems
[3, 7].

C. Measurement and Analysis

The stochastic signal hab can be expressed as a super-
position of sine waves as follows:

hab(t, ~x) =

∫ +∞

−∞
df

∫
d2Ωn̂hab(t, n̂)ei2πf(t+n̂·~x/c) (1)

where hab(t, n̂) are the random variable Fourier coeffi-
cients that can be used to statistically describe the back-
ground. We can assume the background has zero mean,
so < hab >= 0. For Gaussian sources, the signal is
therefore entirely characterized by its second order mo-
ment. These quadratic expectation values can be defined
in terms of the strain density power spectrum Sh. From
Sh, Ωgw(f) can be found through a simple relation:

Sh(f, n̂) =
3H2

0

8π3

Ωgw(f, n̂)

f3
(2)

The signal-to-noise of the stochastic background is far
too low to extract any meaningful information from a
single detector. However, by cross-correlating the strain
data between multiple detectors, the stochastic signal can
be found. The detectors will be measuring the same true
signal, so those will add coherently. The noise in each de-
tector, on the other hand, is independent and will not add
coherently. Given a Gaussian approximation, the noise
will be averaged down as 1√

time
, while the signal will

be remain unsuppressed. The signal cross-correlation is
directly related to key parameters, including Sh. By per-
forming maximum likelihood analyses, one can calculate
Sh from the observed cross-correlated data [2].

The longer the observation time being analyzed, the
more the noise is suppressed. However, dealing with long
periods of time is computationally demanding, both in
terms of processing power and storage. This issue can
be confronted by folding the strain data. We fold over
one sidereal day so anisotropies in the same region of the
sky can add coherently. Ain, Dalvi, and Mitra devel-
oped the algebra and algorithm for such data folding [1].
Testing on LIGO S5 data, they found very significant
decreases in computation time. An analysis of the full
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S5 data on folded data was faster than the same anal-
ysis of unfolded data by a factor of 300. Furthermore,
the data quality was virtually unchanged; the differences
between folded and unfolded maps were orders of mag-
nitude smaller than the values themselves. The folding
increases efficiency, portability, and convenience, facili-
tating more analyses of strain data, carried out at faster
rates.

IV. OBJECTIVES

The goal of this project is to implement a data folding
algorithm like [1] in Python for use in the LIGO stochas-
tic gravitational wave pipeline. This folding should be
performed as efficiently as possible, with negligible loss
in data quality. By the end of the project, we hope to
conduct a proof of principle test with mock data.

The data folding should be fixed to one sidereal day, as
this will add anisotropic signals coherently for any Earth-
based detector. However, the code should be flexible to
allow for the addition of more detectors’ data. At any
given time, a detector is only sensitive to certain regions
of the sky. The sensitivity of a set of detectors is given
by the overlap function. As seen in FIG. 1 from [6], the
overlap function for the two LIGO detectors has large
areas of low sensitivity. While most of the sky will be
covered as the Earth rotates, the sampling will be uneven.
By designing our data folding code with the flexibility to
allow the addition of more detectors, in new locations,
we can enable a broader sampling of the sky.

FIG. 1. Instantaneous overlap function for pairing of LIGO
Hanford and LIGO Livingston detectors in galactic coordi-
nates [6]

V. APPROACH

The overall goal of a directional search is to estimate
the amplitude of the SGWB power spectra density (PSD)
as a function of position in the sky. For current searches,
the shape of the PSD as a function of frequency is as-
sumed. This assumption will work well for this project,
since the PSD shape for the CBC dominated background
is well known.

The time series data from a baseline of two detectors,
s(t) is the sum of the stochastic signal and detector noise.
Following the approach in [1], it is convenient to divide
the data for each baseline I into short time segments of

length τ . A Fourier transform is then performed on each
of these segments as follows:

s̃I(t; f) =

∫ t+τ/2

t−τ/2
dt′s(t′)e−i2πft

′
(3)

The maximum likelihood solution for the coefficients of
the SGWB skymap, P̂ can be calculated using two matrix
quantities, the dirty map X and the Fisher information
matrix Γ:

P̂ = Γ−1 ·X (4)

where,

X =
4

τ

∑
Ift

H(f)γI∗ft,α
PI1PI2

s̃I1(t; f)s̃I1(t; f) (5)

Γ = 4
∑
Ift

H2(f)γI∗ft,α
PI1PI2

s̃I1(t; f)s̃I1(t; f) (6)

H(f) is the expected shape of the stochastic back-
ground’s frequency power spectral density. PI1,2 is the
one-sided power spectral density of the noise for a seg-
ment of time. Since the noise dominates over the signal
for short time segments, this quantity can be accurately
estimated from the data. γI∗ft,α is the overlap function,
containing all the specific information about the detec-
tors’ antenna pattern functions, baseline separations, and
polarization basis.

Crucially, both quantities involve summations over all
time segments. The time t can be re-expressed as t =
iday × Ts + ts, where iday is the index of the sidereal
day, Ts is the duration of a sidereal day, and ts is the
remaining time within a day. The summations over time
can therefore be broken down into two parts

∑
iday

and∑
ts

. Performing the first sum folds the data, with the
information from months or years compressed into one
sidereal day. This process is shown below in FIG. 2,
visualized by [1].

FIG. 2. Folding process visualized for 3 days of LIGO S5
data. The three top rings are projected onto the ring below,
representing the folding data. Gaps in the rings represent
missing data. [1]

The data folding is somewhat complicated by the com-
mon application of window functions to the data. These
functions help reduce spectral line leakage, but lead to
an effective loss of data. To prevent this data loss, we
use 50% overlapping windows in SGWB analysis. These
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overlaps lead to some additional complications in the
data folding algebra, which manifest as corrections to
the X and Γ, but do not impede our ability to fold the
data [1].

VI. PROGRESS FROM FIRST 3 WEEKS

A. Working with Overlap Functions

As seen in the previous section, the overlap function
γ is an essential quantity for SGWB calculations. γ de-
scribes the relationship between the power of the SGWB
and the cross-correlated response of a baseline of two de-
tectors [8]. Essentially, it is a measure of the baseline’s
sensitivity to different parts of the sky, which varies as a
function of frequency and time.

To begin, I focused on visualizing these overlap func-
tions as skymaps and seeing how they evolve in time.
As seen in FIG. 3, the function has two large areas of
maximum sensitivity and a band of minimum sensitivity
separating them. Over the course of the day, the over-
lap function rotates along with the rotation of the Earth,
completing one rotation each sidereal day. This period-
icity is what allows my project to work. If the sensitivity
is periodic over one sidereal day and the SGWB is rela-
tively stationary, the response from each baseline should
also be periodic each day. This is what enables us to fold
a year’s worth of data down to one day without loss of
information.

FIG. 3. The time-evolved overlap function for the baseline of
the LIGO Hanford and LIGO Livingston detectors.

Next, I looked at how these skymaps evolved with fre-
quency. The frequency of the signal enters the overlap
calculation through a factor of e2πif∆t, where ∆t is the
time delay between waves reaching both detectors. In
FIG. 4, we see that as frequency increases, the overlap
function develops more maxima and minima. With a
higher frequency, there are more points where the signals
arriving at each detector can go in and out of phase.

Alternatively, these skymaps can be visualized as
”peanut plots,” shown in FIG. 5. In these plots, the sky

FIG. 4. The frequency-evolved overlap function for the base-
line of the LIGO Hanford and LIGO Livingston detectors.

is represented 3-dimensionally. The radius of each point
on the sphere represents the value of the overlap function
at that point. As these plots evolve in time, they spin
in 3-dimensional space. As they evolve in frequency, the
additional maxima and minima appear as spikes in the
plot.

FIG. 5. Alternate visualization of how the overlap function
evolves in frequency and time. The value of the function at
any given point corresponds to the radius.

B. Spherical Harmonic Transformations

To gain further insight into these overlap functions, I
worked on re-expressing them in terms of spherical har-
monics. The spherical harmonic functions, Y lm, form a
complete, orthonormal basis and, therefore, any function
defined on the surface of a sphere can be re-written as a
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summation. For the overlap function:

γ(θ, φ) =
∑
l,m

γlmY
l
m(θ, φ) (7)

The order of the harmonic l denotes the moment
(monopole, dipole, etc.). The specific mode m corre-
sponds to the frequency of oscillations. Each moment l
has modes ranging from -l to +l. Each (l,m) mode can
be found by integrating the overlap function multiplied
by the spherical harmonic over the sky.

γlm =

∫
dΩγ(θ, φ)Y lm(θ, φ) (8)

In FIG. 6, this transformation is applied to the first
3 moments of the overlap function. As expected, the
monopole term is constant in time. Due to the azimuthal
symmetry of the system, all 3 dipole terms are equal to 0.
The quadrupole terms illustrate the mode m corresponds
to the frequency of oscillations. The m = 0 term is con-
stant in time. The m = −1,+1 terms go through one
period over the course of a day, while the m = −2,+2
terms go through two periods. A factor of (−1)m ac-
counts for the reflection in the −1,+1 modes.

The power spectra for each moment can be calculated
by summing over all the m modes in the following equa-
tion:

Γl =
1

2l + 1

∑
m

|γlm|2

The power for each moment at fixed time is shown in FIG.
7. Here we see that the azimuthal symmetry ensures that
all odd moments drop to 0.

VII. CHALLENGES

The main challenges I’ve faced so far were adjusting to
the practices of new Python modules and functions. For
example, SciPy uses a different convention for defining
θ and φ than both Bilby and HealPy. When calculating

the spherical harmonic transformations, I was faced with
long computation times on my integrations. I fixed this
by adjusting from an integration method that recalcu-
lated the overlap each time to one that utilized a fixed
array of overlap function values.

My next steps on the project will be beginning to
work on the data folding algorithm. I expect there will
be more challenges working with new Python modules.
Since I’m working on something that will be integrated
into a broader pipeline, I will also need to learn the con-
ventions of the group to ensure my code is readable and
easy for others to work with.

FIG. 6. First 3 γlm moments as a function of time. Monopole
terms are shown in red, dipole in blue, and quadrupole in
green.

FIG. 7. Γl for the first 10 moments of the overlap function.
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