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While a growing number of individual gravitational wave events have been observed, researchers
are still searching for a stochastic gravitational-wave background. This superposition of weak,
unresolved gravitational-wave signals could hold a wealth of both astrophysical and cosmological
information. Studying both the isotropic and anisotropic components of the background at current
detector sensitives could provide a measure of matter distributions and large-scale structure in
the Universe. Eventually these searches may provide concrete evidence of inflation and act as a
primordial analog to the Cosmic Microwave Background. This paper will detail the development of
a data folding algorithm for the stochastic gravitational wave background analysis pipeline. Taking
advantage of the fact that detector response is periodic with the rotation of the Earth, long stretches
of time series data can be condensed to the size of one sidereal day. I implement this algorithm
in both simulated and real data and verify it’s efficacy through direct comparison to calculations
with unfolded data. With the implementation of data folding, anisotropic directional searches can
be carried out far more efficiently. Data folding only needs to be applied once, but brings orders of
magnitude improvements in speed and data size, with negligible loss of information.

I. INTRODUCTION

In 2015, LIGO made the first direct detection of a grav-
itational wave (GW) signal. Since then, interferometers
have measured many more signals from black hole and
neutron star binaries. These binaries must either have
very high mass or be very compact in order to be de-
tected by current ground-based detectors. However, the
sky is filled with gravitational wave signals below detec-
tion thresholds that, when analyzed as a whole, contain a
great deal of information. These signals are unresolved,
numerous, and best described according to probability
distributions, hence they are known as the stochastic
gravitational wave background (SGWB).

SGWB searches can be performed as either all-sky
or directional searches. Isotropic searches model the
background with no directional dependence and can be
used to characterize the average GW signal in the uni-
verse. Directional searches account for potential varia-
tion across the sky and can be used to map anisotropies
in the GW distribution. Due to the Earth’s rotation,
ground-based detectors measure a signal from each part
of the sky over a sidereal day.

This project is focused on developing a key component
of LIGO’s SGWB pipeline: data folding. Because LIGO
data is periodic over one day, we can compress the time
series information we measure. By folding gravitational
wave data over one sidereal day, we can vastly improve
the efficiency of current and future directional stochastic
searches.

The contents of this report will be presented as follows.
In Section 2, I present a brief overview of the motivations
for stochastic gravitational wave searches. In Section 3,
I provide the necessary background, starting with gravi-

tational waves in general and then going over stochastic
signals and their measurement and analysis. Section 4
presents the goals and objectives of this specific project.
Section 5 shows the data folding approach, modeled after
the work in [1]. Section 6 details my progress in the first
7 weeks of the program. Finally, in Section 7, I describe
the challenges and next steps for the project.

II. MOTIVATIONS

Gravitational waves allow researchers to probe the Uni-
verse without relying on electromagnetic signals. This
can be incredibly useful, providing independent measure-
ments of electromagnetic sources and new measurements
of GW sources. High signal-to-noise measurements can
provide insight into individual events, but the stochastic
gravitational wave background can provide information
about large scale structure and cosmology.

The earliest electromagnetic signals come from the
time of last scattering, at a redshift of around z = 1100,
and comprise the Cosmic Microwave Background (CMB)
[2]. Before then, the universe was too opaque for photons
to travel very far. However, gravitational waves were able
to propagate all the way back in the early moments of
the universe. Eventually, stochastic gravitational wave
searches may be able to find direct evidence of inflation
and provide information about early universe phase tran-
sitions.

Current detectors lack the sensitivity to measure the
comparatively weak signals from these cosmological back-
ground events, but they can be used to study lower red-
shift astrophysical sources. These sources are expected
to be distributed somewhat anisotropically. A direc-
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tional search looking at these anisotropies in the SGWB
can probe at the universe’s underlying mass distribution.
In particular, these searches can provide strong tests of
the expected distribution of compact binary coalescences
(CBCs)[3].

III. BACKGROUND

A. Gravitational Waves

Gravitational waves manifest as strains, or changes in
length per unit length. They arise when the quadrapole
mass moments of objects, Iuv have a time dependence
[4]. This is why the direct detections already made in-
volve compact mass objects inspiraling. In the context
of general relativity, gravitational waves can be thought
of as linear perturbations of the background metric guv.
Assuming that the gravitational field is weak and non-
stationary, one can show that the solution to the Einstein
field equations for such a perturbation can be constructed
as a plane wave, propagating at the speed of light [5].

Currently, the primary method for detecting gravita-
tional waves is ground-based interferometry. The ba-
sic setup is that of a Michelson interferometer. A laser
beam is split along two long, perpendicular arms and
reflected off of mirrors, combining again at a photo-
detector. Gravitational waves strain the travel distance
along the arms, creating an optical phase difference be-
tween the two beams. With a new phase difference,
the electromagnetic laser waves interfere slightly differ-
ently, manifesting in a change in light intensity at the
frequency of the wave, which one can directly measure.
From these measurements, one may be able to determine
the frequency, amplitude, direction, and polarization of
the wave. Gravitational wave strains are incredibly small,
so interferometers have to be extremely sensitive to de-
tect them. There are many sources of noise that also
make detection difficult, including seismic activity and
Brownian motion of the detector mirrors [4].

B. Stochastic Signals

Due to the low signal-to-noise nature of gravitational
waves, only the most extreme GW events can be directly
detected. However, these types of events constitute a
tiny fraction of all gravitational wave signals; the rest
comprise the stochastic gravitational wave background.
These stochastic signals are weak, independent, random,
and unresolved. The distinction between a stochastic
and resolvable signal can be unclear, as it may depend
on modelling decisions or the precision of a detector.
A signal can be operationally defined as stochastic if a
Bayesian model selection calculation prefers a stochas-
tic signal model over any deterministic signal model [2].
There are two broad categories of stochastic GW signals,
based on the nature of the GW source: astrophysical and

cosmological. Astrophysical signals occur at low redshift
and are stochastic in the limit that number of sources N
is very high. They are mainly comprised of compact bi-
nary systems. Cosmological signals arise from processes
in the early Universe. They can be described stochasti-
cally as a result of the assumed homogeneity and isotropy
of the universe. All inflationary models have some grav-
itational wave byproducts. Early universe phase transi-
tions are also predicted to produce detectable signals [6].
LIGO does not currently have the sensitivity to measure
weak cosmological signals, so this analysis will be aimed
at measuring the astrophysical foreground.

A key parameter of interest in SGWB searches is Ωgw,
the fractional energy density of gravitational waves in the
universe. The parameter can be expressed as Ωgw(f, n̂),
where f is the wave frequency and n̂ is the direction [2].
Searches performed on LIGO’s first three runs have not
detected a stochastic background, but have set upper lim-
its on Ωgw. These limits fall in line with predictions based
on the expected distribution of compact binary systems
[3, 7].

C. Measurement and Analysis

The stochastic signal hab can be expressed as a super-
position of sine waves as follows:

hab(t, ~x) =

∫ +∞

−∞
df

∫
d2Ωn̂hab(t, n̂)ei2πf(t+n̂·~x/c) (1)

where hab(t, n̂) are the random variable Fourier coeffi-
cients that can be used to statistically describe the back-
ground. We can assume the background has zero mean,
so < hab >= 0. For Gaussian sources, the signal is
therefore entirely characterized by its second order mo-
ment. These quadratic expectation values can be defined
in terms of the strain density power spectrum Sh. From
Sh, Ωgw(f) can be found through a simple relation:

Sh(f, n̂) =
3H2

0

8π3

Ωgw(f, n̂)

f3
(2)

The signal-to-noise of the stochastic background is far
too low to extract any meaningful information from a
single detector. However, by cross-correlating the strain
data between multiple detectors, the stochastic signal can
be found. The detectors will be measuring the same true
signal, so those will add coherently. The noise in each de-
tector, on the other hand, is independent and will not add
coherently. Given a Gaussian approximation, the noise
will be averaged down as 1√

time
, while the signal will

be remain unsuppressed. The signal cross-correlation is
directly related to key parameters, including Sh. By per-
forming maximum likelihood analyses, one can calculate
Sh from the observed cross-correlated data [2].

The longer the observation time being analyzed, the
more the noise is suppressed. However, dealing with long
periods of time is computationally demanding, both in
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terms of processing power and storage. This issue can
be confronted by folding the strain data. We fold over
one sidereal day so anisotropies in the same region of the
sky can add coherently. Ain, Dalvi, and Mitra devel-
oped the algebra and algorithm for such data folding [1].
Testing on LIGO S5 data, they found very significant
decreases in computation time. An analysis of the full
S5 data on folded data was faster than the same anal-
ysis of unfolded data by a factor of 300. Furthermore,
the data quality was virtually unchanged; the differences
between folded and unfolded maps were orders of mag-
nitude smaller than the values themselves. The folding
increases efficiency, portability, and convenience, facili-
tating more analyses of strain data, carried out at faster
rates.

IV. OBJECTIVES

The goal of this project is to implement a data folding
algorithm like [1] in Python for use in the LIGO stochas-
tic gravitational wave pipeline. This folding should be
performed as efficiently as possible, with negligible loss
in data quality. By the end of the project, we hope to
conduct a proof of principle test with mock data.

The data folding should be fixed to one sidereal day, as
this will add anisotropic signals coherently for any Earth-
based detector. However, the code should be flexible to
allow for the addition of more detectors’ data. At any
given time, a detector is only sensitive to certain regions
of the sky. The sensitivity of a set of detectors is given
by the overlap function. As seen in FIG. 1 from [6], the
overlap function for the two LIGO detectors has large
areas of low sensitivity. While most of the sky will be
covered as the Earth rotates, the sampling will be uneven.
By designing our data folding code with the flexibility to
allow the addition of more detectors, in new locations,
we can enable a broader sampling of the sky.

FIG. 1. Instantaneous overlap function for pairing of LIGO
Hanford and LIGO Livingston detectors

V. APPROACH

The overall goal of a directional search is to estimate
the amplitude of the SGWB power spectra density (PSD)
as a function of position in the sky. For current searches,
the shape of the PSD as a function of frequency is as-
sumed. This assumption will work well for this project,
since the PSD shape for the CBC dominated background
is well known.

The time series data from a baseline of two detectors,
s(t) is the sum of the stochastic signal and detector noise.
Following the approach in [1], it is convenient to divide
the data for each baseline I into short time segments of
length τ . A Fourier transform is then performed on each
of these segments as follows:

s̃I(t; f) =

∫ t+τ/2

t−τ/2
dt′s(t′)e−i2πft

′
(3)

The maximum likelihood solution for the coefficients of
the SGWB skymap, P̂ can be calculated using two matrix
quantities, the dirty map X and the Fisher information
matrix Γ [2]:

P̂ = Γ−1 ·X (4)

where,

X =
4

τ

∑
Ift

H(f)γI∗ft,α
PI1(t; f)PI2(t; f)

s̃I1(t; f)s̃∗I2(t; f) (5)

Γ = 4
∑
Ift

H2(f)

PI1(t; f)PI2(t; f)
γI∗ft,αγ

I
ft,α′ (6)

H(f) is the expected shape of the stochastic back-
ground’s frequency power spectral density. PI1,2 is the
one-sided power spectral density of the noise for a seg-
ment of time. Since the noise dominates over the signal
for short time segments, this quantity can be accurately
estimated from the data. γI∗ft,α is the overlap function,
containing all the specific information about the detec-
tors’ antenna pattern functions, baseline separations, and
polarization basis.

Crucially, both quantities involve summations over all
time segments. The time t can be re-expressed as t =
iday × Ts + ts, where iday is the index of the sidereal
day, Ts is the duration of a sidereal day, and ts is the
remaining time within a day. The summations over time
can therefore be broken down into two parts

∑
iday

and∑
ts

. Performing the first sum folds the data, with the
information from months or years compressed into one
sidereal day. This process is shown below in FIG. 2,
visualized by [1].

The data folding is somewhat complicated by the com-
mon application of window functions to the data. These
functions help reduce spectral line leakage, but lead to
an effective loss of data. To prevent this data loss, we
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FIG. 2. Folding process visualized for 3 days of LIGO S5
data. The three top rings are projected onto the ring below,
representing the folding data. Gaps in the rings represent
missing data. [1]

use 50% overlapping windows in SGWB analysis. These
overlaps lead to some additional complications in the
data folding algebra, which manifest as corrections to
the X and Γ, but do not impede our ability to fold the
data [1].

VI. PROGRESS SO FAR

A. Working with Overlap Functions

As seen in the previous section, the overlap function
γ is an essential quantity for SGWB calculations. γ de-
scribes the relationship between the power of the SGWB
and the cross-correlated response of a baseline of two de-
tectors [8]. Essentially, it is a measure of the baseline’s
sensitivity to different parts of the sky, which varies as a
function of frequency and time.

To begin, I focused on visualizing these overlap func-
tions as skymaps and seeing how they evolve in time.
As seen in FIG. 3, the function has two large areas of
maximum sensitivity and a band of minimum sensitivity
separating them. Over the course of the day, the over-
lap function rotates along with the rotation of the Earth,
completing one rotation each sidereal day. This period-
icity is what allows my project to work. If the sensitivity
is periodic over one sidereal day and the SGWB is rela-
tively stationary, the response from each baseline should
also be periodic each day. This is what enables us to fold
a year’s worth of data down to one day without loss of
information.

Next, I looked at how these skymaps evolved with fre-
quency. The frequency of the signal enters the overlap
calculation through a factor of e2πif∆t, where ∆t is the
time delay between waves reaching both detectors. In
FIG. 4, we see that as frequency increases, the overlap
function develops more maxima and minima. With a
higher frequency, there are more points where the signals
arriving at each detector can go in and out of phase.

Alternatively, these skymaps can be visualized as
”peanut plots,” shown in FIG. 5. In these plots, the sky
is represented 3-dimensionally. The radius of each point
on the sphere represents the value of the overlap function

FIG. 3. The time-evolved overlap function for the baseline of
the LIGO Hanford and LIGO Livingston detectors.

FIG. 4. The frequency-evolved overlap function for the base-
line of the LIGO Hanford and LIGO Livingston detectors.

at that point. As these plots evolve in time, they spin
in 3-dimensional space. As they evolve in frequency, the
additional maxima and minima appear as spikes in the
plot.

B. Spherical Harmonic Transformations

To gain further insight into these overlap functions, I
worked on re-expressing them in terms of spherical har-
monics. The spherical harmonic functions, Y lm, form a
complete, orthonormal basis and, therefore, any function
defined on the surface of a sphere can be re-written as a
summation. For the overlap function:

γ(θ, φ) =
∑
l,m

γlmY
l
m(θ, φ) (7)

The order of the harmonic l denotes the moment
(monopole, dipole, etc.). The specific mode m corre-
sponds to the frequency of oscillations. Each moment l
has modes ranging from -l to +l. Each (l,m) mode can
be found by integrating the overlap function multiplied
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FIG. 5. Alternate visualization of how the overlap function
evolves in frequency and time. The value of the function at
any given point corresponds to the radius.

by the spherical harmonic over the sky.

γlm =

∫
dΩγ(θ, φ)Y lm(θ, φ) (8)

In FIG. 6, this transformation is applied to the first
3 moments of the overlap function. As expected, the
monopole term is constant in time. Due to the azimuthal
symmetry of the system, all 3 dipole terms are equal to 0.
The quadrupole terms illustrate how the mode number m
corresponds to the frequency of oscillations. The m = 0
term is constant in time. The m = −1,+1 terms go
through one period over the course of a day, while the
m = −2,+2 terms go through two periods. A factor of
(−1)m accounts for the reflection in the −1,+1 modes.

The power spectra for each moment can be calculated
by summing over all the m modes in the following equa-
tion:

Γl =
1

2l + 1

∑
m

|γlm|2

The power for each moment at fixed time is shown in FIG.
7. Here we see that the azimuthal symmetry ensures that
all odd moments drop to 0.

C. Correlating Simulated Data

Next, I started to work with the components of the
dirty map and Fisher information matrix that will need
to be folded: the power spectral densities (PSD) and the
cross spectral density (CSD). The PSDs, or autocorre-

FIG. 6. First 3 γlm moments as a function of time. Monopole
terms are shown in red, dipole in blue, and quadrupole in
green.

FIG. 7. Γl for the first 10 moments of the overlap function.

lations, are calculated by convolving the Fourier trans-
formed data from a given detector with itself:

S1 = s̃I1(t; f)s̃∗I1(t; f). (9)

The CSD, or cross power, is calculated by convolving the
data from two different detectors:

P12 = s̃I1(t; f)s̃∗I2(t; f). (10)

Using the python package BILBY [9], I generated col-
ored Gaussian time series data based on the LIGO design
sensitivities for the Livingston and Hanford detectors. I
then divided this time series into small time segments,
performed Fast Fourier Transforms (FFT) on each seg-
ment, and averaged them together. This gave me the av-
erage Fourier transformed data needed to calculate au-
tocorrelations and cross power. As expected, the au-
tocorrelations resemble the design PSDs that originally
colored the noise. The cross power maintains a similar
shape, but the power has been averaged down. In or-
der to see exactly how cross correlating has reduced the
power, it is useful to look at a normalized quantity. The
coherence term is equal to the CSD normalized by both
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FIG. 8. Autocorrelation and cross power for simulated Han-
ford and Livingston colored Gaussian noise.

corresponding detector PSDs. For perfectly correlated
data from two detectors at the same location, coherence
is equal to 1. For the completely uncorrelated Gaus-
sian noise from Bilby, the coherence is averaged down by

1√
Nsegments

, where Nsegments is the number of short time

segments being averaged over.

FIG. 9. Coherence for uncorrelated colored Gaussian noise
from two LIGO detectors

Next, I injected a coherent signal into both detectors,
centered at 200 Hz. The incoherent noise again averaged
down by 1√

Nsegments

, but the coherent signal remains at

a coherence of 1. Here, we can see the value of looking at
many days worth of data. The more days analyzed, the
more time segments and the more the uncorrelated noise
is suppressed relative to a coherent signal.

Instead of averaging over time segments, we can in-

FIG. 10. Coherence for injected coherent signal in uncorre-
lated colored Gaussian noise from two LIGO detectors

stead look at all time segments at once in a spectrogram.
Looking at the time domain for our constant injected
coherent signal isn’t particularly illuminating. However,
we can introduce some time dependence by modulating
the coherent injection with a sinusoid of known period,
mimic the modulation of a real GW detector response. In
FIG. 11, we see this modulated injection, varying across
time at 200 Hz.

FIG. 11. Spectrogram view of an injected coherent signal
modulated at fixed pweriod

D. Folding Simulated Data

The spectrogram in FIG. 11 acts like a very idealised
stochastic signal. The period of oscillation is analogous to
the stochastic response period of one sidereal day. Given
that the signal is periodic and stationary, the spectro-
gram can be folded down to the size of one period (see
FIG. 12).

Next, I worked with a week’s worth of simulated
stochastic data, provided by Liting Xiao. Like the previ-
ous spectrogram data, I was able to fold this cross power
down to the size of one period, in this case the accurate
value of one sidereal day (see FIG. 13). The simulated
signal was a stochastic dipole, as may be observed in the
two strong responses seen in one day.
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FIG. 12. Modulated injected signal folded over known period

FIG. 13. Modulated injected signal folded over known period

E. Dirty Maps

As noted in the Approach section, the dirty map
X is an important quantity for calculating the SGWB
skymap. Noting that H(f) is not time dependent and
γ does not vary day to day, (5) can be broken into two
summations:

X =
4

τ

∑
Ifts

H(f)γI∗fts,α
∑
iday

S12(idayTs + ts; f)

P1,2(idayTs + ts; f)
, (11)

where Ts is the length of a sidereal day and ts is the time
from the start of each day,

S12 = s̃I1(idayTs + ts; f)s̃∗I2(idayTs + ts; f), (12)

and

P1,2 = PI1(idayTs + ts; f)PI2(idayTs + ts; f) (13)

Performing the second summation folds the data down
to the size of one sidereal day. This summation only

needs to be performed once, but all subsequent analysis
on folded data will be sped up by a factor of Ndays.

Computing these dirty maps provides a useful way to
determine whether data folding is working correctly. By
computing maps using both (5) and (11), we can check
to see if there are any significant differences, indicating
a loss of information in the folding process. While the
dirty map calculation involves a summation over frequen-
cies, in order to save on computation time, it is suffi-
cient to look at individual frequencies. At various fre-
quencies, normalized difference maps were calculated as
|Xunfold−Xfold|√
XunfoldXfold

for the week of simulated dipole data (see

FIG. 14).
At low frequency, the maps looked as expected, with

the maximum difference between the unfolded and folded
calculations being 0.2%. However, there were some com-
plications at higher frequencies, with distinct spots of
major differences of over 200%. This problem is cur-
rently being addressed, but it seems to be a numerical
error linked to the oscillations of the overlap function at
high frequency.

FIG. 14. Normalized difference between folded and unfolded
dirty maps at 20 Hz and 500 Hz

F. Challenges

As seen in the previous section, I’m still working
through some numerical issues with dirty maps at high
frequency. Another significant challenge I’ve encountered
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has to do with how to handle various time segment du-
rations. Ideally, the segments would fit neatly into one
sidereal day. However, a primary goal of this folding code
is to allow for flexible use. Using any segment length that
isn’t a factor of one day inherently comes with a loss of
information. There are two main methods to deal with
this duration problem: cutting days down to be divisible
by the given duration or lining times in each day up as
close as possible, accepting that segments will be slightly
offset from one another. From preliminary investigation,
it seems that the latter option will result in less informa-
tion loss, as seen in FIG. 15.

FIG. 15. Comparison of information loss between two meth-
ods of handling different segment durations. Across all rea-
sonable segment choices, it appears accepting time offset will
minimize information loss.

Moving forward, I anticipate a few issues to come up
when I begin working with real data. The biggest chal-
lenge will likely be handling times where there are gaps
in the data or data quality is poor. I will also have to line
up the time series data from different detectors. Moving
from a week’s worth of data to a year may also come with
challenges. I’ll have to be more careful with how much
memory is being used at a given time.

G. Next Steps

The next steps for my project will focus on the tran-
sition from simulated to real data. As mentioned in the
previous section, I will have to add functionality to han-
dle some of the complications that come with real data.
Throughout implementation, I will also have to work to
minimize information loss while still allowing for flexible
use of the algorithm. For example, I will have to as-
sess what the optimal methods are for handling different
segment durations.

Another important step for the algorithm is applying
corrections to the folding to account for windowing of the
time segments. While this correction will be important
future work, it will likely not fall within the timeline of
this project.
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