
Semi-coherent searches for continuous
gravitational waves, and the N1/4 law

GrahamWoan

7 June 2021
LIGO-T2100266

Abstract

We revisit the relationship between sensitivity and the number of coherent seg-
ments in a semi-coherent search for continuous gravitational wave signals. Using
the simplest model, we give a short tutorial on how to set the sensitivity level for
such a search, how the search sensitivity is degraded as the number of coherent seg-
ments (𝑁) increases and how to compute this factor using standard SciPy functions.
Finally we show the origins of thewell-known𝑁1/4 law fromboth a frequentist and
Bayesian perspective.

1 Introduction
Searches for continuous gravitational waves are generally limited by computing power,
and over the past 20 years a number of strategies and analysis pipelines have been devel-
oped to maintaining reasonable sensitivity whilst significantly reducing the processing
burden. Most of these are “semi-coherent” analyses: rather than track a possible sig-
nal phase for an entire observing run (which may last for several years), the data is
divided into 𝑁 contiguous segments of shorter duration. These segments are searched
in a phase-sensitive (coherent) manner but the results of these searches are combined
incoherently. From earliest times we have known that this process needs massively less
processing power than a fully-coherent search over the same data duration, but that
the overall sensitivity is reduced by a factor of about 𝑁1/4. Though well-founded and
widely accepted, this result appears in the literature within specific and complex search
pipelines and its origin can be difficult to pin down. As a result, the “𝑁1/4 law” risks
becoming folklore.

In this technical note we use a toy model to demonstrate the relative sensitivity of
a semi-coherent search as a function of its segmentation, and provide a simple Python
function to compute it. In addition, we give an more intuitive explanation of its origin
from both a frequentist and a Bayesian perspective.

This generic analysis has another application: recent discussions concerning data
release policy in LIGOhave highlighted the potential issue of “Swiss cheese” analysis, in
which a sensitive continuous-wave search is performed outside the collaboration using
only the data released around CBC events and before the official data release of the full
observing run. Clearly this issue becomes more relevant as the number of CBC events
increases. This note will help in computing its impact.

1

2 Semi-coherent statistics
We begin with a short tutorial, and consider a simple model of a sinusoidal signal in
a real time-series of 𝑀 samples (𝑀 even), containing Gaussian noise of variance 2𝜎2
(the factor of two here simplifies later expressions and has no other significance). There
are𝑀/2 + 1 frequency bins in this (real-to-complex) transform, and for clarity we will
consider the situation in which the signal frequency falls exactly at the centre frequency
of a bin.

We chop the full time-series of length 𝑇 into𝑁 contiguous segments, each of length
𝑀, determine a power spectrum for each segment and then add these power spectra
to form a single overall semi-coherent power spectrum for further analysis. This is a
highly-simplified version of real continuous-wave semi-coherent search pipelines, but it
contains the essential ingredients. Our goal is to determine the relationship between the
smallest detectable signal amplitude and 𝑁, for a given false alarm and false dismissal
probability. Generally we do not know the frequency bin that contains the signal, so we
need to set the false alarm threshold high enough for noise to not exceed a certain level
in any bin. There is therefore a significant additional “trials factor” to consider.

2.1 Setting the false alarm threshold
In the signal-free case, each single spectral channel in the Fourier transform of a seg-
ment contains complex Gaussian noise of variance 𝜎2 in each of the real and imaginary
parts (by equipartition and Parseval’s theorem). The square-modulus (power) spectrum
of this has a 𝜒2 distribution with two degrees of freedom,

𝑝(𝑦1) =
1
2𝜎2 exp (−

𝑦1
2𝜎2) , (1)

where 𝑦1 is spectral power, here with a mean of 2𝜎2 and a variance of 4𝜎4.
The sum of 𝑁 similar spectra gives a total noise power measurement that follows a

𝜒2 distribution but now with 2𝑁 degrees of freedom,

𝑝𝑁(𝑦) =
(2𝜎2)−𝑁
(𝑁 − 1)!𝑦

𝑁−1 exp [− 𝑦
2𝜎2] , (2)

and the cumulative probability distribution to a threshold 𝑦t is

𝐶𝑁(𝑦t) = ∫
𝑦t

0
𝑝𝑁(𝑦) d𝑦. (3)

This function is available in the Python scipy.statsmodule as chi2.cdf. Using our
measures

𝐶𝑁(𝑦t) ≡ chi2.cdf(y_t/sigma ∗ ∗2, 2 ∗ N) (4)
is therefore the probability that 𝑦 < 𝑦t in a single frequency bin of the summed spec-
trum.

The joint probability that all of the𝑀/2+1 ≃ 𝑀/2 independent frequency bins con-
tain noise power less than 𝑦t is [𝐶𝑁(𝑦t)]𝑀/2. If we set an overall false alarm probability
of 𝑝fa, our detection threshold is the value of 𝑦t satisfying 𝑝fa = 1 − [𝐶𝑁(𝑦t)]𝑀/2. Given
𝑝fa is small, this approximates to solving

[1 − 𝐶𝑁(𝑁, 𝑦t)] − 2𝑝fa/𝑀 = 0 (5)

for 𝑦t.

2

2.2 Sensitivity
We can now introduce a signal and determine how strong it has to be to pass this false
alarm threshold with a high probability. We model the signal as a simple sinusoid of
fixed (but possibly unknown) frequency 𝜈 and amplitude ℎ in a real time-series, i.e.

𝑣𝑖 = ℎ cos(2𝜋𝜈𝑡𝑖) + 𝑛𝑖, (6)

where 𝑛𝑖 is the noise value (of variance 2𝜎2) at time 𝑡𝑖 and the index 𝑖 runs over all
samples.

If this time-series has 𝑀 samples, and for simplicity if 𝜈 falls at the centre of a bin,
the signal in the frequency domain is purely real with an amplitude of𝑀ℎ/2, scaled by
1/√𝑀 by the conventional symmetric normalisation1. The bin in the power spectrum
of a single segment that contains the signal has a non-central 𝜒2 distribution, with two
degrees of freedom and a non-centrality parameter of𝑀ℎ2/4. Again, this is available in
scipy as ncx2.pdf(y/(sigma**2), 2, M*h*h/4/(sigma**2)).

If we sum 𝑁 of these spectra, the bin containing the signal now has a non-central
𝜒2 distribution 𝑓(𝑦) with 2𝑁 degrees of freedom, and a non-centrality parameter of
𝑁𝑀ℎ2/4. The probability that this value is below the detection threshold (defined above)
as a function of ℎ is the false dismissal probability at that signal level 𝑝fd, i.e.

𝑝fd = ∫
𝑦𝑡(𝑝fa)

0
𝑓(𝑦∶2𝑁, 𝑁𝑀ℎ2/4) d𝑦 (7)

≡ ncx2.cdf(y/(sigma ∗ ∗2), 2 ∗ N, N ∗ M ∗ h ∗ h/4/(sigma ∗ ∗2)).

Solving this equation for ℎ gives us our signal amplitude sensitivity for a given false
alarm and false dismissal probability.

3 Example
We can use typical numbers for a semi-coherent search over one year of data to demon-
strate how sensitivity is affected by the data segmentation. The total number of samples
over the year for a search up to 1 kHz will be approximately 𝑇 = 2000 ⋅ 3600 ⋅ 24 ⋅ 365.25.
We use the Python function in Appendix A, which implements the analysis above, to
compute the sensitivity of a semi-coherent search comprising 𝑁 segments relative to
a fully coherent search (𝑁 = 1). In addition to the case considered above where the
frequency of the signal is not known, we also include the relative sensitivity if the fre-
quency is known (i.e., a targeted search). We should note that the trials factor here is
simply dependent on the number of frequency bins in the coherent segments and does
not take into account the significantly larger trials factor from (e.g.) frequency deriva-
tive and sky position that a real continuous-wave search includes.

Table 1 shows the sensitivity reduction factor for specific segments lengths, com-
pared to a fully coherent search at a known frequency. It is relevant to note that when
we include a trials factor an increase in coherence time from 30 minutes to one day
brings the semi-coherent search sensitivity to within nearly a factor of two of the fully
coherent search sensitivity.

Fig. 1 shows this relative sensitivity as a function of𝑁 from𝑁 = 1 (fully coherent) to
𝑁 = 48⋅365.25 (coherence time of 30 min). The log-log plot also shows the𝑁1/4 line for

1This is ‘ortho’ normalisation in NumPy.

3

coherence time 𝑁 𝐹trials 𝐹
30 min 17532 9.92 7.07
1 day 365 4.22 2.80
1 week 52 2.97 1.85
1 month 12 2.44 1.41
6 months 2 2.14 1.09
1 year 1 2.08 1.00

Table 1: The relative sensitivity of a semi-coherent search over one year as a function of
the number of coherent segments𝑁. All values are relative to a fully coherent search at a
known frequency. Column 𝐹 shows the sensitivity reduction factor when the frequency
is known, and column 𝐹trials when the frequency is unknown. reduction.

0 2500 5000 7500 10000 12500 15000 17500
number of coherent segments

2

4

6

se
ns

iti
vi

ty
 re

du
cti

on

without trials factor
with trials factor

100 101 102 103 104

number of coherent segments

100

101

se
ns

iti
vi

ty
 re

du
cti

on

without trials factor
with trials factor
fourth-root law

Figure 1: The relative sensitivities of semi-coherent searches for a sinusoidal signal in
a one year time-series divided into 𝑁 segments. The maximum value of 𝑁 corresponds
to a coherence time of 30 minutes. The two curves show the effect of including and
excluding a search over frequency. In all cases the false alarm probability is 0.05 and
the false dismissal probability 0.01. The log-log plot includes a slope corresponding to
a 𝑁1/4 law.

4

comparison. It is clear that for large 𝑁 the search sensitivity degrades as approximately
𝑁1/4 comparedwith the coherent search, and this slope is not affected by the trials factor.
This dependence on 𝑁 can be understood by considering the relationship between the
signal-to-noise ratio of the signal in the time-series, and its signal-to-noise ratio in a
power spectrum, which we will now investigate.

4 Signal-to-noise ratios, and the origins of the N1/4 law
We model our signal in the frequency domain as complex, with amplitude 𝐴0 and un-
known phase, embedded in symmetric Gaussian noise 𝑛 of variance 𝜎2 in each of the
real and imaginary (𝑥, 𝑦) components. We define the components as

𝐴2
0 = 𝐴2

0𝑥 + 𝐴2
0𝑦 (8)

𝑍𝑥 = 𝐴0𝑥 + 𝑛𝑥 (9)
𝑍𝑦 = 𝐴0𝑥 + 𝑛𝑦 (10)

where var[𝑛𝑥] = var[𝑛𝑦] = 𝜎2. We can now determine the signal-to-noise ratio present
before and after computing the square-modulus of the data.

The signal-to-noise ratio (snr) of a parameter is the ratio of the parameter’s mean
unbiased estimator ⟨𝐸⟩ to the standard deviation of that estimator:

snr = ⟨𝐸⟩
(var[𝐸])1/2 . (11)

If we know the phase of the signal we can rotate it to be purely real and use this real
component as the unbiased estimator, resulting in an snr of

𝛾 = 𝐴0
𝜎 . (12)

Generally however the phase is not known. The Bayesian approach to this is presented
in the next section, but for now we will simply assume that we use

𝐸 = 𝑍2𝑥 + 𝑍2𝑦 − 2𝜎2 (13)

as our estimator, which is unbiased in 𝐴2
0 in the sense that

⟨𝐸⟩ = 𝐴2
0𝑥 + 𝐴2

0𝑦 + ⟨𝑛2𝑥⟩ + ⟨𝑛2𝑦⟩ − 2𝜎2 = 𝐴2
0. (14)

The snr for this estimator is

𝛤 = ⟨𝐸⟩
(var[𝐸])1/2 =

𝐴2
0

(⟨𝐸2⟩ − 𝐴4
0)1/2

. (15)

Applying Isserlis’ Theorem

⟨𝑎𝑏𝑐𝑑⟩ = ⟨𝑎𝑏⟩⟨𝑐𝑑⟩ + ⟨𝑎𝑐⟩⟨𝑏𝑑⟩ + ⟨𝑎𝑑⟩⟨𝑏𝑐⟩ (16)

for Gaussian zero-mean variables 𝑎, 𝑏, 𝑐, 𝑑 we now expand the ⟨𝐸2⟩ term to give

⟨𝐸2⟩ =𝐴4
0 + 4𝜎4 + 4𝜎2𝐴2

0,

5

so now
𝛤 = 𝐴2

0
2(𝜎4 + 𝐴2

0𝜎2)1/2
, (17)

which we can rewrite in terms of 𝛾 = 𝐴0/𝜎 as

𝛤 = 𝛾2
2(1 + 𝛾2)1/2 . (18)

Equation (18) is fundamental to understanding the 𝑁1/4 law in semi-coherent searches.
It quantifies the reduction in sensitivity that occurs when phase information is lost. The
snr of the estimator generated from the power spectrum (𝛤) is always less than the in-
trinsic snr of a frequency domain signal of known phase 𝛾. Indeed, if 𝛾 ≪ 1 we have

𝛤 ≃ 𝛾2
2 , (19)

and the snr in the power spectrum is very severely degraded.
When we perform a semi-coherent search we set a detection threshold on the final

summed power spectrum, defined by a final snr 𝛤F. This spectrum is the result of sum-
ming 𝑁 independent segment spectra, so for stationary noise in the Gaussian limit2 the
snr of each segment is simply

𝛤s =
𝛤F
𝑁1/2 . (20)

If the total number of samples in the full data is 𝑇, the number of samples in a segment
is𝑀 = 𝑇/𝑁 and the frequency domain snr of our signal in a segment is

𝛾 = 𝑀1/2ℎ
2𝜎 = 𝛾i𝑀1/2, (21)

where 𝛾i is the initial snr, in a single time-series sample. If our signal is at threshold in
the final summed spectrum, and the number of segments 𝑁 is large, then 𝛾 and 𝛤s will
be necessarily small in each segment and

𝛤s ≃
𝛾2
2 = 𝛾2i𝑀

2 = 𝛾2𝑖
𝑇
2𝑁 . (22)

But the final snr on which we place the threshold is 𝛤F = 𝛤s𝑁1/2, so

𝛾2i =
2𝛤F𝑁1/2

𝑇 . (23)

At the threshold strain sensitivity ℎt, 𝛾i = ℎt/(2√2𝜎), so we can say that our semi-
coherent search sensitivity varies as

ℎt ∝
𝑁1/4

𝑇1/2 , (24)

as the final snr, 𝛤F, is largely fixed by the false alarm and false dismissal probabilities.
2This relation is slightly biased for small𝑁.

6

If 𝑁 is small, the snr in each of the segment power spectra 𝛤s will necessarily not be
small. In this case the approximation in Eqn. (19) is no longer valid and we need to use
the full version of Eqn. (18) , giving

ℎt = 4𝜎 𝛤F
𝑇1/2 [1 + (1 + 𝑁

𝛤2F
)
1/2
]
1/2

. (25)

Although this sensitivity result is defined in terms of a final statistic signal-to noise-ratio
(𝛤F) rather than a false alarm and false dismissal probability the agreement between
the two is very good. Empirically, a choice of 𝛤F = 1.15 matches the 𝑁-dependence of
𝑝fap = 0.05 and 𝑝fdp = 0.01 to within 5 percent for any value of 𝑁.

5 A Bayesian comment
Although there is no direct equivalent of signal-to-noise ratio in Bayesian inference
there is a straightforward Bayesian interpretation of the impact that the loss of phase
information has on estimating signal strength.

As before, the (complex) data in the frequency bin that contains the signal is

𝑍 = 𝐴0 exp(𝑖𝜙) + 𝑛, (26)

where 𝜙 is the signal phase, 𝑛 is complex noise and |𝑍|2 ≡ 𝑦. The joint likelihood for 𝐴0
and 𝜙 is

𝑝(𝑍 | 𝐴0, 𝜙) ∝ exp (−|𝑍 − 𝐴0e𝑖𝜙|2
2𝜎2) , (27)

and given 𝜙 we have a Gaussian likelihood for 𝐴0. However, if 𝜙 is not known we need
to construct a marginal likelihood for 𝐴0 which, for a uniform prior on 𝜙, has a Rice
distribution

𝑝(𝑍 | 𝐴0) ∝ ∫
2𝜋

0
exp (−|𝑍 − 𝐴0e𝑖𝜙|2

2𝜎2) d𝜙 (28)

∝ |𝑍|
𝜎2 exp (−

|𝑍|2 + 𝐴2
0

2𝜎2) 𝐼0 (
𝐴0|𝑍|
𝜎2) , (29)

where 𝐼0 is the modified Bessel function of the first kind, order zero. We can express
this in terms of the power in the bin, 𝑦 = |𝑍|2, to give

𝑝(𝑦 | 𝐴0) ∝ exp (−𝑦 + 𝐴2
0

2𝜎2) 𝐼0 (
𝐴0√𝑦
𝜎2) . (30)

For a uniform prior on 𝐴0 this is the posterior pdf for 𝐴0 when its phase information
is lost, but is also a non-central 𝜒2 distribution with two degrees of freedom and a non-
centrality parameter 𝐴2

0, corresponding to the analysis in Sec. 2.2.

7

A Example Python function

def sensitivity(T,N,fap,fdp,search):

'''

Computes the relative sensitivity of a semi-coherent search for a sinusoidal

signal in Gaussian noise. T samples are divided into N segments, and the

power spectra of these segments are summed to give a final semi-coherent

spectrum. The false alarm probability can take account of, or ignore, the

trials factor that comes with searching over frequency in this final spectrum,

set by the "search" boolean variable. The function returns the sensitivity

threshold in the final spectrum and amplitude of a signal at this detection

threshold for noise with a variance of 1 in the time domain.

T = total number of samples

N = number of subdivisions (segments)

fap = false alarm probability (0...0.1 note restricted range)

fdp = false dismissal probability (0...1)

search (boolean) whether to include the trials factor from a frequency search

over the spectrum

'''

import numpy as np

from scipy.optimize import minimize_scalar

from scipy.stats import chi2

from scipy.stats import ncx2

def funfap(y,N,M,fap, trials):

'''

function to be minimised over y to determine the false alarm probability

threhold level, taking account of the trails factor over frequency channels.

'''

return (1-chi2.cdf(2*y, 2*N) - fap/trials)**2

def funfdp(A,thresh,N,M,fdp):

'''

function to be minimised over A to determine the sensitivity level for the

given false dismissal probability.

'''

return (ncx2.cdf(2*thresh, 2*N, 2*N*M*A*A/4) - fdp)**2

M=T//N # length of a coherent segment

if search:

trials = M/2

else:

trials = 1

result1 = minimize_scalar(funfap, bracket=[0,4*N], args=(N,M,fap,trials),

method='Golden', tol=1e-10)

thresh = result1.x

result2 = minimize_scalar(funfdp, bracket=[0,1], args=(thresh,N,M,fdp),

method = 'Golden', tol=1e-10)

if not result1.success and result2.success:

print("did not converge")

return thresh, result2.x

1

8

