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1 Introduction

Gravitational Waves are produced by the bulk accelerated motion of matters, that propagates
as waves in the fabric of spacetime at the speed of light. The existence of Gravitational
Waves were first predicted by Albert Einstein in 1916 as a consequence of his work on
General Relativity. The LIGO interferometers were built using the basic idea of Michelson
interferometer and its precise strain measurements rely on the laser beam resonators in the
optical cavity of the interferometers. Many years of relentless efforts and several technical
upgradations in the detectors made by the scientists helped aLIGO to achieve the sensitivity
to detect more than 50 GW events till date.

When the GW passes through the interferometer its arm length increases and decreases
consecutively which causes change in differential arm length during the event. The intensity
of the recombined light at the detector readout which is a function of the differential arm
length (DARM) of the interferometer, gives the infinitesimal gravitational wave strain as
shown in Figure 1. The LIGO detector is highly susceptible to various kind of noises which
are basically unwanted signal produced by interactions among detector subsystems or with
the surrounding environment that gets added to the GW strain data. Here, we are interested
in the Fabry-Perot cavity and test masses of the detector. In this project we are trying to
detect the position of the laser beam spot on the test masses. The aLIGO is not free from
scattered light noise. The scattering of light helps us to see the scattered beam spot from
any angle on the mirror surfaces. Due to irregularities and point scatterers of the mirror, the
light undergoes deflection from its path defined by specular reflection and hence scattering
occurs. The angular motion of the mirrors causes oscillatory translational motion of the
beam spot on the mirror. Thus, tracking the position of the beam has become one of the
important task within LIGO community.

Figure 1: Schematic Diagram of LIGO detector
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One should not observe the beam spot ideally when it is viewed at an angle to the beam axis
since no light deflects according to the laws of specular reflection. However, due to scattering
of light the beam spot can be observed from different angles with varying intensities according
to the Bidirectional Reflection Distribution function (BRDF) of the mirror.

BRDF =
Ps/Ω

Pi cos θs
(1)

where Pi and Ps are incident and scattered power and θs is the scattering angle and Ω is
the solid angle subtend at the CCD camera used for capturing the image of the test mass.
We are mostly interested in large angle scattering where the optic behaves as a Lambertian
surface. Here Basler ace acA640-120gm camera equipped with a Gigabyte Ethernet (GigE)
interface has been installed for faster data transmission over ethernet network as shown in
Figure 2. Two lens telescope system is placed between GigE camera and mirror to focus
the beam spot onto the GigE camera sensor while ensuring lenses and camera are placed
perpendicular to scattered beam axis and optimum utilization of the CCD pixel arrays. It
gives the videos of the scattered light coming from the surface of the test masses.

Figure 2: GigE camera setup for imaging the scattered light

Pooja Sekhar, Milind Vaddiraju have already tried some classical image processing tech-
niques which failed to detect the centroid of the beam because the beam do not retain its
gaussianity after scattering due to irregularities of the mirror surface. In Figure 3[2], on
plotting the intensity vs pixel number along a particular axis of the image of the beam spot,
the intensity profile deviates quite a bit from the expected Gaussian profile. This is caused
due to the scattering from point defects.
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Figure 3: Deviation from Gaussian intensity profile

Several attempts made by them using Neural Networks has shown reasonable good results
in comparison to the classical methods. Neural networks were trained with hyperparameters
tuned using a grid search and beam spot motion at 0.2 Hz with an amplitude of about
3mm is tracked with maximum error under 20% [1]. But we require better accuracy for our
purpose.

2 Motivation

These are future goals of GW researchers for which our current work on laser beam tracking
is very crucial. We need to detect the position of the beam spot to understand the angular
movement of the mirror so that feedback control system attached to the test masses fix its
position as shown in Figure 4.
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3 Objective

Our main objective is to get the position of the beam spot at every instances with better
accuracy using some traditional image processing techniques along with some Deep Learning
models. Although we will be stick to detecting the position only in this work, but in future
it will help in reducing some noise from the data and analysing the motion in a better way
if we become successful.

Figure 4: Angular Control of Suspended Optics
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• Generate simulated video of beam spot motion. Since Deep Learning models are ex-
pected to produce better results and we lack labelled image datasets for training, we
need to simulate scattering light images comparable to the GigE images.

• Develop a Convolutional Neural Network (CNN) model to extract features from the
images i.e. finding the centroid of the beam and angular deflection of the mirror.

4 Simulation of Beam Spot

4.1 Purely Gaussian Beam

Here we will consider a fundamental laser beam with a linearly polarized, Gaussian field
distribution in the beam waist

~E(x′, y′, 0) = ~E0e
− (x′−µx)2+(y′−µy)2

w2
0 (2)

where E0 is constant field vector in the transverse (x,y) plane and (µx, µy) is the position of
the centroid of the beam on the plane.

Ẽ(kx, ky, 0) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

~E(x′, y′, 0)e−i(kxx
′+kyy′)dx′dy′ (3)

Ẽ(kx, ky, z) = Ẽ(kx, ky, 0)eikzz (4)

Then, the field at the object plane becomes

~E(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

Ẽ(kx, ky, z)dkxdky (5)

The intensity of the beam i.e. I(x, y, z) = ~E
?~E will give the image of the beam spot shown

in Figure 5(left).

4.2 Scattered Beam

Using these equation we can construct beam spot centred at (µx, µy) at any irregular mirror
surface by varying the z over the surface. Now the difference between the field for varying z
and field for constant z gives the field of scattered light.

Suppose, the mirror surface is at an approximate distance z from the source plane. Then,
the electric field of the scattered will be

~Escatter(x, y, z) = ~E(x, y, z)eikz∆z − ~E(x, y, z) (6)

where ∆z(x, y) is the height of irregularities on the mirror surface. For the places of no
irregularities on the mirror ∆z = 0.
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Gaussian Beam Spot Scattered Beam Spot

Figure 5: These images of resolution 512x512 are generated on a 34 cm x 34 cm camera for
a gaussian laser beam of radius 6.5 cm

Thus, the intensity of the scattered light is

Iscatter(x, y, z) = ~E
?

scatter
~Escatter (7)

Using these formulation we can simulate beam spot as shown above in Figure 5(right).

5 Noise

From the scattered power of the laser beam spot we can get number of photons generated
per second by dividing the average power by the energy of a single photon of wavelength λ.

p =
Ps

hc/λ

If a lens of 2” diameter has been placed at a distance of 1 meter from the ETM and making
angle of 10◦ to the beam axis as shown in Figure 2, the solid angle subtended at the CCD
camera will be, Ω =

∫
sin θdθdφ=0.0256

For a laser power of 500 kW inside the Fabry-Perot cavity and the mirror surface being
Lambertian for large angle scattering i.e. BRDF= 1

π
sr−1 the scattered power is obtained

from Eq. 1,

Ps = BRDF× ΩPi cos θs =
1

π
× 0.0256× 5× 105 × cos 10◦ = 4022.15W (8)
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So, for a 1064 nm wavelength laser the number of photons incident on the camera will be,
p = 2.15× 1022

Now the number of e− generated per pixel per second is proportional to the number photons
stored in the pixel

N =
dN

dp
× p

where dN
dp

is the photon to electron conversion rate in the CCD camera. But this is not
perfectly true for all values of p. Below a certain threshold value of p, N is just the number
of electrons contributing to the Dark Current noise and above some value of p, the number
of electrons at each pixel reach a saturation point resulted a saturation in intensity.

5.1 Shot Noise

Shot noise originates due to the discrete nature of photons i.e. same number of photons
can not generate same number of photo-electrons each time. The fluctuation follows Poisson
statistics and therefore, shot noise is equivalent to

√
N . Shot noises for various simulation

models have been shown below considering 2.15 × 1020 photons have been incident on the
CCD camera for a exposure time of 10 ms assuming photon to electron conversion rate is
0.8.

(a) Shot noise added to Gaussian Beam (b) Shot noise added to Scattered Beam

Figure 6:
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5.2 Dark Current Noise

Dark current noise is generated due to the electrons that are produced thermally within the
silicon structure of CCD which is independent of the photon induced signal. Cryogenics
helps in reducing the temperature within the cavity and hence reduces the dark current up
to several orders. Like Shot noise, Dark Current noise follows Poisson relationship and is
equivalent to the square root of number of thermal electrons generated within the image
exposure time.

(a) Dark Current noise (b) Dark Current noise added to Gaussian Beam (c) Dark Current noise added to Scattered Beam

Figure 7: (a) Dark Current noise for dark current of 11 electron per pixel per second for a
exposure time of 10 ms [3], (b) Image of the gaussian beam spot considering dark current,
(c) Image of the scattered beam spot considering dark current

5.3 Photon Saturation effect

After a certain threshold value of number of photon incident on each pixel, the number of
photo-electrons do not increase hence the intensity at such pixels get saturated. Here we
have assumed this threshold value is of the order of 1016

(a) Saturation effect on Gaussian Beam (b) Saturation effect on Scattered Beam

Figure 8:
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6 Data Generation

Data preparation is one of the important steps in any Supervised Learning problem. Here
we will be generating images of beam spot corresponding to a predefined beam motion on
the mirror based on each of these following simulation models:

• Gaussian Beam [5]

• Scattered Beam [5]

• Gaussian Beam with CCD Noise [8]

• Scattered Beam with CCD Noise [8]

Considering there types of motion (i.e. along X axis only, along Y axis only, along both
direction) Train, Validation and Test set have been prepared. For all of these cases we will
be taking a CCD screen of 34 × 34cm2 and beam radius 6.5 cm and all of the images have
512× 512 resolution.

Figure 9: Defining coordinate system on CCD screen

6.1 One Dimensional Motion: Movement along X-axis/ Y-axis only

Now we will show beam position on X or Y axis at different times in our datasets which we
are going to use.
Train Data:
We are taking uniformly separated data points on the axis between -1 cm and 1 cm as
centroid position of our generated beam spot images [10]. Our simulated video is of 20 secs
duration with 32 fps.

page 11



LIGO-T2100205–v1

Figure 10: Position of beam at different times for consecutive frames

Validation Data:
For generating validation data we will be taking superposition two sinusoidal waves of fre-
quency 0.2 Hz and 0.4 Hz and of amplitude 0.5 cm each for a time period of 10 sec with 32
fps.

Figure 11: Position of beam at different times for consecutive frames
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Test Data:
Here we will superpose two sinusoidal waves of frequency 0.1 Hz and 0.2 Hz and of amplitude
0.5 cm each for a time period of 10 sec with 32 fps.

Figure 12: Position of beam at different times for consecutive frames

6.2 Two Dimensional Motion: Movement on X-Y plane

In this case we will be taking 2D motion of the beam spot on X-Y plane of mirror and
corresponding beam positions at various times have been shown below.
Train Data:
Here we have generated 32×32 meshgrid on 2×2cm2 area of CCD screen centered at origin.
Here beam is moving along +ve X axis and after completing one axis it moves to next Y
position and starts moving towards +ve X direction.

Figure 13: X coordinate of the beam spots
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Figure 14: Y coordinate of the beam spots

Validation and Test Data:
Here our beam movenment along X axis is similar to 11 and 12 respectively but Y axis
movement is sinusoidal with frequency of 0.1 Hz and amplitude of 1 cm.

Figure 15: Y coordinate of the beam spots
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7 Convolutional Neural Network

Convolutional neural network is a special type of machine learning algorithm which is mainly
used to extract complex features from images. 1D convolution is exception which is used on
any timeseries data instead of images.

It consists of several convolution operations, maximum or average pooling, activation layer
etc as shown below.

7.1 Model Architecture

Figure 16: CNN Model Architecture
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When this model will be applied on any beam spot image it will try to predict its position
by giving two values corresponding to x and y coordinate of its centroid.

7.2 Cost Function

Mean Squared Error (MSE) is our preferred choice of cost function for this problem. It gives
the MSE loss of the predicted position and true position of the beam spot i.e. the lesser loss
indicates better model for centroid detection.

Mean Squared Error =

∑N
Frame no = 1 (Predicted Position - True Position)2

Total no. of Frames
(9)

7.3 Metric

Metric is a measure of the goodness of any Machine Learning model. Here we will be using
Signal to Noise Ratio (SNR) as our metric which is ratio of mean squared value true position
and MSE loss of predicted and true value of beam position of all the frames. For a very good
model the SNR value should be higher.

Signal to Noise Ratio (SNR) =

∑
Frames (True Position)2∑

Frames (Predicted Position - True Position)2 (10)

7.4 Optimizer

We have chosen Adaptive Moment (Adam) as optimizer for our purpose. Optimizer helps us
to reach at the optimised values of the weights. Adam is modified gradient descent method
which finds the weights faster.

7.5 Hyperparameters

Batchsize: Instead of using the whole large training set at a time, we divide the data set
into smaller sets called batches. The length of the these batches is called batchsize which is
taken 32 in our problem.

Learning Rate: Here for Adam optimizer we are using a learning rate of 0.001. This
learning rate defines how far away is your new weights from previous weights.

Learning Rate Scheduler: We are decreasing our learning rate by a factor of 2 after each
10 epochs. Changing learning rate with time helps to reach at the optimal solution faster
by reducing overshooting.

Epochs: We are using 50 epochs i.e. training the model on train dataset 50 times.
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8 Results

We have obtained following results for each of the simulation models after training the
above discussed CNN model. Here we will show the difference between predicted position
and true position of different frames of our test datasets. All of the positions are measured
in centimeters. And corresponding histograms of residues have also been plotted in terms of
fractional pixel error where 1 pixel = 34

512
=0.066 cm.

8.1 Gaussian Beam

8.1.1 Movement along X axis only

• Mean Squared Error: 3.85× 10−8cm2

• Signal to Noise Ratio: 3236578.25

8.1.2 Movement along Y axis only

• Mean Squared Error: 4.26× 10−7cm2

• Signal to Noise Ratio: 292608.21
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Figure 17: Difference between predicted position and true position for gaussian beam simu-
lation model
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Figure 18: Histogram of error in centroid detection for gaussian beam simulation model
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Figure 19: Difference between predicted position and true position for gaussian beam simu-
lation model
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Figure 20: Histogram of error in centroid detection for gaussian beam simulation model
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8.1.3 Movement on X-Y plane

• Mean Squared Error: 1.49× 10−6cm2

• Signal to Noise Ratio: 250350.57

Figure 21: Difference between predicted position and true position for gaussian beam simu-
lation model
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Figure 22: Histogram of error in centroid detection for gaussian beam simulation model
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8.2 Scattered Beam

8.2.1 Movement along X axis only

• Mean Squared Error: 9.47× 10−7cm2

• Signal to Noise Ratio: 131575.43

Figure 23: Difference between predicted position and true position for scattered beam sim-
ulation model
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Figure 24: Histogram of error in centroid detection for scattered beam simulation model
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8.2.2 Movement along Y axis only

• Mean Squared Error: 6.2× 10−7cm2

• Signal to Noise Ratio: 200848.31

Figure 25: Difference between predicted position and true position for scattered beam sim-
ulation model
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Figure 26: Histogram of error in centroid detection for scattered beam simulation model
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8.2.3 Movement on X-Y Plane

• Mean Squared Error: 1.59× 10−6cm2

• Signal to Noise Ratio: 235496.26

Figure 27: Difference between predicted position and true position for scattered beam sim-
ulation model
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Figure 28: Histogram of error in centroid detection for scattered beam simulation model
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8.3 Gaussian Beam with CCD Noise

8.3.1 Movement along X axis only

• Mean Squared Error: 1.92× 10−7cm2

• Signal to Noise Ratio: 646445.21

Figure 29: Difference between predicted position and true position for gaussian beam with
CCD noise simulation model

page 30



LIGO-T2100205–v1

Figure 30: Histogram of error in centroid detection for gaussian beam with CCD noise
simulation model
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8.3.2 Movement along Y axis only

• Mean Squared Error: 2.42× 10−7cm2

• Signal to Noise Ratio: 513956.71

Figure 31: Difference between predicted position and true position for gaussian beam with
CCD noise simulation model
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Figure 32: Histogram of error in centroid detection for gaussian beam with CCD noise
simulation model
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8.3.3 Movement on X-Y Plane

• Mean Squared Error: 8.26× 10−7cm2

• Signal to Noise Ratio: 452277.76

Figure 33: Difference between predicted position and true position for gaussian beam with
CCD noise simulation model
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Figure 34: Histogram of error in centroid detection for gaussian beam with CCD noise
simulation model
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8.4 Scattered Beam with CCD Noise

8.4.1 Movement along X axis only

• Mean Squared Error: 7.28× 10−7cm2

• Signal to Noise Ratio: 171082.57

Figure 35: Difference between predicted position and true position for scattered beam with
CCD noise simulation model
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Figure 36: Histogram of error in centroid detection for scattered beam with CCD noise
simulation model
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8.4.2 Movement along Y axis only

• Mean Squared Error: 2.46× 10−7cm2

• Signal to Noise Ratio: 506563.46

Figure 37: Difference between predicted position and true position for scattered beam with
CCD noise simulation model
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Figure 38: Histogram of error in centroid detection for scattered beam with CCD noise
simulation model
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8.4.3 Movement on X-Y Plane

• Mean Squared Error: 1.87× 10−6cm2

• Signal to Noise Ratio: 199444.28

Figure 39: Difference between predicted position and true position for scattered beam with
CCD noise simulation model
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Figure 40: Histogram of error in centroid detection for scattered beam with CCD noise
simulation model
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9 Conclusion

Finally we have been able to reach sub pixel accuracy. Our model can detect the position
of the beam spot with a maximum error of 40 micron. In future I am planning to run
this CNN model on simulation models contatining point scatterers and expecting to develop
more realistic models. This time I have not got the scope of working with real labeled data.
Perhaps in near future I will try to run it on real dataset.
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