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Abstract. The detection of gravitational waves has created the opportunity for many new
discoveries. One such potential discovery is the stochastic gravitational wave background (SGWB).
In order to detect it, detector data must be properly monitored and analysed. StochCharMon, a
low latency stochastic data monitoring pipeline, works to monitor the quality of stochastic data. We
develop a new feature of StochCharMon, the stochastic detector sensitivity (SDS) which calculates
the energy density at which a detector can detect a stochastic signal. The SDS uses the power
spectral density (PSD) from a single detector and the overlap reduction function (ORF) from a
detector pair to isolate the stochastic signal and evaluate the detector sensitivity. The SDS range
has a strong correlation with the compact binary coalescence (CBC) range and gives us an idea of
how soon we will have the sensitivity needed to detect the SGWB.

I. INTRODUCTION

Since their initial detection in 2015, gravitational
waves (GWs) have been at the forefront of scientific re-
search. GWs are ripples caused by disruptions to the
fabric of space-time typically traced back to high-energy
events, such as compact binary coalescences, i.e. the
merger of objects like black holes and neutron stars. GWs
have the potential to provide unprecedented insight into
astrophysical phenomena and the primordial universe [1].

The Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) has the ability to directly detect the GWs
permeating from high-energy events and has been doing
so since the first successful GW detection on September
14th 2015 [2]. LIGO is a large interferometer consisting
of two, four kilometer arms oriented in an L-shape. A
laser beam is split using a beam splitter and the two re-
sulting beams are sent down the arms of the detector. If
the light beams go undisturbed by GWs, the light from
both arms will arrive back at the detector at the same
time and cancel each other out, resulting in no GW de-
tection. If a GW is present, it will create a slight change
in distance through a disturbance in space-time and the
two beams will return to the detector at different times.
In this instance, the two beams of light will have vary-
ing phases and will not cancel, providing evidence of the
presence of a GW through the detection of light.

A. Stochastic Data & Energy Density

While the sources of detected GWs are typically iso-
lated astrophysical events, a collection of GWs can be de-
tected from the stochastic gravitational-wave background
(SGWB) [3]. The SGWB is a stochastic signal composed
of the weak GW signals from a large number of uniden-
tified events [4]. For instance, the superposition of GW
signals from a population of binary black holes would
appear as a stochastic signal. The SGWB can also be

credited to stochastic processes that occurred in the pri-
mordial stages of the universe. We expect a successful
detection of the SGWB to occur in the near future.

An improvement in stochastic data analysis could lead
to a deeper understanding of the primordial universe and
the stochastic events which may have occurred around
the time of the Big Bang [5]. Additionally, stochastic
data analysis can provide the ability to achieve a deeper
understanding of what the universe is composed of and
allows for a method of detection free of scientific models.

Similar to the role distance plays in the CBC range,
energy density (Ω) can be a proxy for assessing the sen-
sitivity of detectors to stochastic signals [6]. The SGWB
energy density upper limit for the O3 run was estimated
to be about 7 ∗ 10−6 [1]. In order to successfully detect
the SGWB, the detectors must be sensitive at the afore-
mentioned energy density. The estimated GWB energy
density for O3 was around 1 ∗ 10−8. This value will get
closer to the estimated SGWB upper limit as the sensi-
tivities of the detectors improve.

II. BACKGROUND MATERIAL

A. StochCharMon

StochCharMon is a data-quality monitoring pipeline
which specializes in the analysis of LIGO and Virgo low-
latency stochastic data [7]. The monitor has a variety of
tools that provide us with useful data, such as estimates
for the sensitivity at which stochastic data is being col-
lected and analyzed as well as coherence estimates for
the two LIGO locations and the noise stationarity of the
detectors.

StochCharMon provides a useful representation of the
cross-correlated data between the Hanford and Liv-
ingston LIGO locations. This H1-L1 coherence, shown
in Figure 1, is determined using Equation 1 by dividing
the cross power of the two detectors by the product of



2

FIG. 1. The coherence between Livingston and Hanford with
1 mHz frequency resolution. The dashed red line signifies the
expected level of coherence. This plot shows the coherence
between the detectors is strongest from 0 Hz to about 22 Hz.
Figure reproduced from the StochCharMon summary page
[8].

FIG. 2. Energy sensitivity vs. observation time. The search
sensitivity decreases as observation time increases. The cu-
mulative sensitivity is at its highest at the start of the observ-
ing period. The variance on Omega decreases as a function
of time as 1/

√
t, implying that the sensitivity to Omega in-

creases through integrating over the whole observation time.
Figure reproduced from the StochCharMon summary page
[8].

the auto powers, which is the spectrum multiplied with
its complex conjugate [7].

coh(f) =
|S12(f)|2

S1(f) S2(f)
(1)

Knowing the coherence aids in the cross-analysis of
data and therefore in the process of separating the
stochastic data from any disruptive external artifacts or
noise from instrumentation.

a(f) = |s̃I s̃I(f)|1/2 (2)

One of StochCharMon’s main features is the analy-

sis of a detector pair’s sensitivity to stochastic signals,
as shown in Figure 2. The strain sensitivity (σh) is the
sensitivity of what is measured with the detector. The
sensitivity to the GWB energy density (σΩ), which is the
cosmological quantity used in publications, is determined
and is then compared to the aforementioned strain sen-
sitivity using Equation 3 [7].

σΩ(f) =
10π2

3H2
100

f3

γ(f)
σh(f)2 (3)

An analysis of the detector sensitivity can be per-
formed, using Equation 4, by taking a weighted average
in the time and frequency domains [7].

σ =

n∑
t=1

m∑
f=1

(
σ(f, t)−2

)−1/2
(4)

The analysis of sensitivity provides a deeper under-
standing of the detectors’ strengths and weaknesses, as
well as ways in which they can be improved.

B. Stochastic Overlap Functions

Polarization is the orientation in which a wave, such as
a GW, oscillates. Each detector is most sensitive to dif-
ferent locations in the sky and has different polarization
responses as a function of detector location, orientation,
and time of observation. To best visualize these sensitivi-
ties, we can determine the detector polarization response
functions of each detector in both the cross and plus po-
larization. This is accomplished using built in functions
from Bilby, a Bayesian inference library tool for parame-
ter estimation with built-in plotting functions, and plot
them using healpy, a Python package for creating spher-
ical data visualizations [9].

responsefactor = e2πi∆t (5)

After finding the detectors’ individual polarization re-
sponse functions using Equation 5, an overlap function
for the H1 and L1 detector pair as a function of time can
be determined and plotted, as shown in Figure 3. When
the overlap function is plotted as a function of time, the
areas of high sensitivity appear to rotate around the map
once per sidereal day. This occurs because the plot is
showing a fixed position in the sky. The detectors, as
well as their regions of sensitivity, rotate along with the
Earth.

Overlap functions are essential tools for both poten-
tial stochastic gravitational wave detection and stochas-
tic data analysis. Stochastic searches utilize a two detec-
tor cross-correlation statistic, and the overlap function is
required to properly calculate the corresponding corre-
lated data. The functions also allow us to identify the
locations in which the detectors are most sensitive to de-
tecting a stochastic signal.
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FIG. 3. The overlap function of H1 and L1 as functions of
time (1 Hour) and frequency (1000 Hz). The dark blue and
yellow represent locations in the sky in which the detectors are
most sensitive. For the overlap function in the time domain,
as the sidereal day continues, the areas of high sensitivity
rotate along with the detectors relative to a fixed point in
the sky. In the frequency domain, as the frequency increases,
the wavelength decreases and the number of waves that fit
between the two detectors increases.

III. STOCHASTIC DETECTOR SENSITIVITY

A. CBC Range

The binary neutron star (BNS) inspiral range (CBC
range) is a useful tool which is used to evaluate the sen-
sitivity of the detectors. It shows the sensitivity of a
detector by providing the distance in megaparsecs (Mpc)
at which CBC events can be detected with two 1.4 solar
mass objects at a signal to noise ratio (SNR) of 8 and is
calculated using Equation 6. The CBC range can fluc-
tuate for various reasons and is useful in detector trou-
bleshooting.

∝
∫

(fα−3)

(PSD)
df (6)

B. Detector Correlation

Measuring the correlation between a pair of detectors
is necessary for a stochastic search. The stochastic signal
should be the same for each detector, up to the response
of the individual detectors. Therefore, stochastic data

FIG. 4. Overlap reduction function for the H1 and L1 detector
pair. Correlation steadily decreases as frequency increases.

is included in correlated data since all other noise and
uncorrelated data is excluded.

Overlap reduction functions (ORFs), as shown in Fig-
ure 4, provide values for the frequency dependent cor-
relation between data from a pair of detectors [4]. The
correlation is dependent on the response functions of both
detectors.

When calculating the correlation between a detector
pair, the data being measured is divided into segments.
The correlation of each individual segment is calculated
and the segments are then averaged together. As the
number of segments (N) increases, the measured corre-
lation gets closer to the true correlation value. This is
because as N increases, the correlated data remains con-
stant while the uncorrelated data will decrease and ap-
proach zero at a rate proportional to 1√

N
. This provides

us with the ability to detect very weak signals.
Due to stochastic signal detection’s heavy reliance on

the use of correlated data, many stochastic analysis tools
neglect the benefit of looking at the detectors separately.
The SDS is beneficial since it allows for the assessment
of the sensitivity of individual detectors as opposed to
the sensitivity of an entire network and therefore pro-
vides the opportunity to run diagnostics on individual
detectors. Since the ORF is the same for a pair of detec-
tors, their individual PSDs operate as the differentiating
factor between ranges.

C. Calculation

The CBC range is proportional to the integral of fα−3

over the PSD of a specific detector. As shown in Equation
7, the SDS is calculated in a similar fashion to the CBC
range.

∝
∼

∫
(ORF )(fα−3)

(PSD)
df (7)

The main difference between calculating the CBC
range and the SDS is the inclusion of the ORF for a
pair of detectors in the numerator of the integral.
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FIG. 5. CBC range for H1 using a day’s worth of data. The
plot shows the distance at which the detectors can detect a
CBC event with two 1.4 solar mass objects at an SNR of 8.
The y-axis represents distance in Mpc.

FIG. 6. stochastic detector sensitivity for L1 for a day’s worth
of data. The plot shows the energy sensitivity at which the
detectors are most sensitive to stochastic data. The y-axis is
energy sensitivity (Ω).

In Equation 7, the CBC range’s power law value (α)
of 2

3 is used for calculating the SDS. The value 2
3 is at-

tributed to the stochastic background’s expected spec-
tral shape given by the superposition of numerous CBC
events. This results in a numerator of (ORF )(f−

7
3 ).

IV. RESULTS DISCUSSIONS

A. Stochastic Detector Sensitivity

CBC ranges, as shown in Figure 5, are useful in as-
sessing the sensitivities of the detectors. Based on the
CBC range, we added a new feature to the StochChar-
Mon package: the stochastic detector sensitivity (SDS).
Figure 6 shows the SDS calculated for 24 hours of L1 data
with time in hours on the x-axis and the energy sensitiv-
ity in ohms on the y-axis. Similar to the CBC range,
its primary function is to assess an individual detector’s
sensitivity to a stochastic signal. While the CBC range is
conveyed as a function of distance (Mpc), the SDS uses
energy density (Ω) as a proxy for assessing the detectors’
sensitivity. Unlike the CBC range, a smaller SDS means
greater sensitivity.

The SDS must be normalized for it to be properly con-
textualized and to recover the adimensional fractional
energy GW density. The constants needed for normal-

FIG. 7. The correlation between the CBC range and SDS for
L1 for a day’s worth of data. The correlation is fairly strong.
The x-axis is the SDS in ohms and the y-axis is the CBC
range in Mpc.

ization were found using equation 8.

Ω0 =
ρ

T 1/2
f
2/3
0

(
2π2

3H0

)(∫ (
(ORF )(fα−3)

PSD

)2

df

)−1/2

(8)

The SDS normalization factor is shown in Equation 9.

ρ

T 1/2
f

2/3
0

(
2π2

3H0

)
(9)

The correlation between the CBC range and SDS were
plotted for 24 hours of L1 data in Figure 7 and shows
that there is a fairly strong correlation between the two
values. This strong correlation is expected since both the
CBC range and SDS are dependent on the sensitivity of
the same detector. This shows that while the CBC range
can be representative of the sensitivity of detectors to
stochastic signals, the SDS range is still a useful tool.

The implementation of the SDS meets the project goal
by showing how close the detectors are to the sensitiv-
ity needed to detect stochastic signals. The estimated
SGWB upper energy density limit for O3 is 7 ∗ 10−6 [1].
The SDS from O2 data shows a sensitivity of about 10−8.
These two values are relatively close and we will get closer
to the desired sensitivity as the detectors are improved.

B. Summary Page

A summary page was created which contains the CBC
range, SDS, and correlation of L1 and H1 data for the
entire O2 run. The page stores the data from the high
throughput calculations, provides easier access to the
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data in a more user-friendly medium, and aids in efficient
analysis of said data. Pages such as this can be created
for every observing run and operate as an archive, high-
lighting the improvement of the detectors’ sensitivities to
stochastic signals.
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