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Abstract. The detection of gravitational waves has created the opportunity for many new
discoveries. One such potential discovery is the stochastic gravitational wave background. In order
to detect it, stochastic data must be properly monitored and analysed. Stochmon, a low latency
stochastic data monitoring pipeline, works to monitor the quality of stochastic data. Stochmon has
not been recently updated and is not well integrated with current gravitational wave data analysis
tools. The goal of this project is to identify potential improvements to make to Stochmon’s analysis
functions, implement said changes, and integrate the system with existing analysis tools so that it
can be used during the next observing run. A new feature of Stochmon, the stochastic detector
sensitivity (SDS) has been implemented which calculates the energy density at which a detector can
detect a stochastic signal.

I. INTRODUCTION

Ever since their initial detection in 2015, gravitational
waves (GWs) have been at the forefront of scientific re-
search. GWs are notably ripples caused by disruptions
to the fabric of space-time typically traced back to high-
energy events, such as binary black hole mergers, com-
pact binary coalescence (CBC), and bursts. GWs have
the potential to provide unprecedented insight into as-
trophysical phenomena and the primordial universe [1].

The Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) has the ability to directly detect the GWs
permeating from high-energy events and has been doing
so since the first successful GW detection on September
14th 2015 [2]. LIGO is a large interferometer consisting
of two, four kilometer arms oriented in an L-shape. A
laser beam is split using a beam splitter and the two re-
sulting beams are sent down the arms of the detector. If
the light beams go undisturbed by GWs, the light from
both arms will arrive back at the detector at the same
time and cancel each other out, resulting in no GW de-
tection. If a GW is present, it will create a slight change
in distance and the two beams will return to the detector
at di↵erent times. In this instance, the two beams of light
will have varying phases and will not cancel, providing
evidence of the presence of a GW. There are LIGO detec-
tors in Livingston, Louisiana and Hanford, Washington.

While the sources of GWs are isolated astrophysical
events, currently detected GWs can be detected from
the stochastic gravitational-wave background (SGWB)
[3]. The SGWB is a stochastic signal composed of the
weak GW signals from a large number of unidentified
events [4]. For instance, the superposition of GW signals
from a population of binary black holes would appear
as a stochastic signal. The SGWB can also be credited
to stochastic processes that occurred in the primordial
stages of the universe. We expect a successful detection
of the SGWB to occur in the near future.

Stochmon is a data-quality monitor which specializes

in the analysis of LIGO and Virgo low-latency stochastic
data [5]. The monitor has a variety of tools that provide
us with useful data, such as estimates for the sensitivity
at which stochastic data is being collected and analyzed
as well as coherence estimates for the two LIGO locations
and the noise stationarity of the detectors.

A. Problem & Objectives

The improvement of Stochmon will lead to a direct im-
provement in the analysis of stochastic data, the quality
of data, and the overall ability of LIGO to detect the
SGWB. With the current instrumentation, the detection
of the SGWB, and GWs in general, is imperfect. This is
especially evident in frequency bands where the data is
corrupted by noise.
Improvement in stochastic data analysis could lead to

a deeper understanding of the primordial universe and
the stochastic events which may have occurred around
the time of the Big Bang [6]. Additionally, stochastic
data analysis can provide the ability to achieve a deeper
understanding of what the universe is composed of and
allow for a method of detection free of scientific models.
As of now, Stochmon exists and is operational. How-

ever, it has not been integrated into many of the analysis
tools used by LIGO and is not actively being improved
or monitored. We aim to improve the Stochmon system
and its ability to investigate the performance of LIGO’s
detectors in detecting the SGWB. Improvement must be
identified through an analysis of the current e�cacy of
the Stochmon system. Prior to beginning the project, the
assumption is that all elements of Stochmon can be up-
dated in some way to achieve a higher quality of stochas-
tic data analysis. Another objective is to ensure that
Stochmon is well integrated with other existing online
data monitoring tools. These updates must then also be
integrated so that they can be utilized during the next
LIGO detection run.
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FIG. 1. The coherence between Livingston and Hanford with
1 mHz frequency resolution. The dashed red line signifies the
expected level of coherence. This plot shows the coherence
between the detectors is strongest from 0 Hz to about 22 Hz.
Figure reproduced from the Stochmon summary page [7].

II. APPROACH

The approach for this project is entirely contingent on
what elements of Stochmon ultimately need improving
and how those updates can be accomplished. The first
step is to identify the components of Stochmon which are
the most beneficial and need the most revision. After
the initial identification, the next step would be to iden-
tify the ways in which the component could be improved
and how those improvements could be implemented. The
length of each step in the process is dependent on what
approaches are taken and how intensive those approaches
may be. One area that has already been identified for
improvement is the systematic integration of the output
of Stochmon with the LIGO detector Summary Pages.
While working on improvements, we will be working
closely with the original developers and maintainers of
Stochmon. They will provide us with guidance and sup-
port throughout the process.

Stochmon consists of many tools which aid in the
stochastic data analysis. Stochmon provides a detailed
analysis of cross-correlated data between the Hanford
and Livingston LIGO locations. This H1-L1 coherence,
shown in Figure 1, is determined by dividing the cross
power of the two detectors by the product of the auto
powers [5]:

coh(f) =
|S12(f)|2

S1(f) S2(f)
. (1)

Knowing the coherence aids in the cross-analysis of
data and therefore in the process of separating the
stochastic data from any disruptive external artifacts or
noise from instrumentation.

Stochmon also provides an analysis of the cross ampli-
tude density plots for both detectors [5]:

a(f) = |esIesI(f)|1/2. (2)

FIG. 2. Energy sensitivity vs. observation time. The search
sensitivity decreases as observation time increases. The cu-
mulative sensitivity is at its highest at the start of the observ-
ing period. The variance on Omega decreases as a function
of time as 1/

p
t, implying that the sensitivity to Omega in-

creases through integrating over the whole observation time.
Figure reproduced from the Stochmon summary page [7].

One of Stochmon’s main features is the analysis of de-
tector sensitivity to stochastic signals (Figure 2). The
strain sensitivity (�h) is the sensitivity of what is mea-
sured with the detector. The energy sensitivity (�⌦),
which is the cosmological quantity used in publications, is
determined and is then compared to the aforementioned
strain sensitivity [5]:

�⌦(f) =
10⇡2

3H2
100

f3

�(f)
�h(f)

2. (3)

An analysis can be performed by taking a weighted
average of both the sensitivity of time and frequency [5]:

� =
nX

t=1

mX

f=1

�
�(f, t)�2

��1/2
. (4)

The analysis of sensitivity provides a deeper under-
standing of the detectors’ strengths and weaknesses, as
well as how they can be improved.

III. STOCHASTIC DATA AND STOCHMON

An analysis of the detectors’ sensitivities is one of
Stochmon’s central features which aids in the data anal-
ysis process. In order to best implement constructive
change to the way in which the sensitivity is monitored,
a deeper understanding of the sensitivity of the detectors
as a whole had to be developed.
Polarization is the orientation in which a wave, such as

a GW, oscillates. Each detector is most sensitive to dif-
ferent locations in the sky and has di↵erent polarization
responses dependent on their location and orientation on
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Earth. To best visualize these sensitivities, we can de-
termine the detector polarization response functions of
each detector in both the cross and plus polarization us-
ing built in Bilby functions and plot them using healpy
(Figure 3) [8].

FIG. 3. The H1 cross (right) and plus (left) polarization re-
sponse functions. The dark blue and yellow represent loca-
tions in the sky in which the detector is most sensitive. The
cross and plus polarizations allow for a wider range of high
sensitivity.

After finding the detectors’ individual polarization re-
sponse functions, an overlap function for the H1 and L1
detector pair as a function of time can be determined and
plotted (Figure 4). When the overlap function is plotted
as a function of time, the areas of high sensitivity appear
to rotate around the map once per sidereal day.

Next, the initial overlap function is multiplied with the
plane wave term, where �t is the delay term between
both detectors, to get a visualisation (Figure 5) for the
full stochastic sky response dependent on frequency:

�(f, n; t) = overlap(n; t) ⇤ ei2⇡f�t. (5)

The overlap functions can also be visualized in three
dimensions, where the radius of the plot correlates to the
value of the overlap function at a given point in the sky.

FIG. 4. The overlap function of H1 and L1 as a function of
time at hour 1 of a sidereal day. The dark blue and yellow
represent locations in the sky in which the detectors are most
sensitive. As the sidereal day continues, the areas of high
sensitivity rotate along with the detectors relative to a fixed
point in the sky.

FIG. 5. The overlap function of H1 an L1 as a function of
frequency at 1000 Hz. The dark blue and yellow represent
locations in the sky in which the detectors are most sensi-
tive. As the frequency increases, the number of waves that fit
between the two detectors increases.

FIG. 6. 3D overlap function dependent on time at hour 1 of
a sidereal day. In this plot, the coloring aids in the 3D visu-
alization and has no further significance. The axes represent
the value of the overlap function at a given location.

Figure 6 shows the 3D overlap function as a function of
time and Figure 7 is the three-dimensional representation
as a function of frequency.
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FIG. 7. 3D overlap function dependent on frequency at 1000
Hz. In this plot, the coloring aids in the 3D visualization and
has no further significance. The axes represent the value of
the overlap function at a given location.

Overlap functions are a helpful tool for both poten-
tial stochastic gravitational wave detection and stochas-
tic data analysis since they allow us to identify the loca-
tions in which the detectors are most sensitive to detect-
ing a stochastic signal.

IV. DETCHAR AND DATA QUALITY
ANALYSIS

To implement stronger tools for stochastic data qual-
ity (DQ) analysis, it is beneficial to turn to general DQ
analysis for guidance. At LIGO, one of the ways DQ is
evaluated is through DQ shifts. DQ shifts are standard
procedure where the designated ‘shifters’ for the week at
both H1 and L1 are tasked with reviewing a week’s worth
of data and plots and writing a summary of any signifi-
cant or notable changes. These can be either positive or
negative changes.

While doing DQ shifts, shifters refer to the detector
characterization (Detchar) summary pages, which show
an overview of the data content for each day of an ob-
serving run [9]. On these pages, there are four main plots
that shifters analyse. These plots are meant to detect and
highlight any noise, glitches, or events in the data that
may a↵ect analysis done with said data.

The first plot is the spectrogram, which is a plot of
time versus frequency for a day of observing. Glitches
and noise in the data present themselves as red or blue
lines. Red lines represent high noise relative to the me-
dian while blue lines represent a decrease from the stan-
dard noise. The binary neutron star (BNS) inspiral range
plot shows the sensitivity of the detectors by providing

FIG. 8. Overlap reduction function for the H1 and L1 detector
pair. The correlation drops to zero at several frequencies.
Correlation steadily decreases as frequency increases.

the distance at which CBC events can be detected with
two 1.4 solar mass objects at a signal to noise ratio (SNR)
of 8. Shifters look for significant increases or decreases in
the range which may be indicative of a change in the de-
tector’s functionality. ‘Glitchgrams’ and glitch rate plots
both show potential glitches in the data. Shifters look
for loud glitches that may be in clusters. These clusters
of noise could have negative impacts on the data and im-
pact its usability. The detchar summary pages also have
Hveto and LASSO, tools that identify the potential chan-
nels which may be responsible for the noise and glitches
in the data [10, 11].

V. DETECTOR CORRELATION

Measuring the correlation between a pair of detectors is
necessary for a stochastic search. Stochastic data should
be the same for each detector, up to the response of the
individual detectors. Therefore, stochastic data is in-
cluded in correlated data since all other noise and uncor-
related data is excluded.

Overlap reduction functions (ORFs), as shown in Fig-
ure 8, provide values for the frequency dependent cor-
relation between data from a pair of detectors [4]. The
correlation is dependent on the response functions of both
detectors.

When calculating the correlation between a pair of
detectors, the data being measured is divided into seg-
ments. The correlation of each individual segment is cal-
culated and the segments are then averaged together. As
the number of segments (N) increases, the measured cor-
relation gets closer to the true correlation value (Figure
9). This is because as N increases, the correlated data re-
mains constant while the uncorrelated data will decrease
and approach zero at a rate proportional to 1p

N
. This

provides us with the ability to detect very weak signals.
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FIG. 9. As the number of segments increases, the measured
correlation approaches the true correlation value.

FIG. 10. CBC range for H1 and L1 using an hour of data.
The plot shows the distance at which the detectors can detect
a CBC event with two 1.4 solar mass objects at an SNR of 8.
The y-axis is negligible due to the purposeful exclusion of the
necessary constant. With the inclusion of the constant, the
y-axis would represent distance in Mpc.

VI. STOCHASTIC DETECTOR SENSITIVITY

CBC ranges, such as the BNS inspiral range plot in-
cluded on the Detchar summary pages, are useful in
assessing the sensitivities of the detectors (Figure 10).
Based on the CBC range, we implemented a new feature
of Stochmon. This new feature is the stochastic detector
sensitivity (SDS) (Figure 11). Similar to the CBC range,
its primary function is to assess an individual detector’s
sensitivity for stochastic data. While the CBC range is
conveyed as a function of distance (Mpc), the SDS is cal-
culating the energy sensitivity at which stochastic data
can be detected.

Due to stochastic data detection’s heavy reliance on
the use of correlated data, many stochastic analysis tools
neglect the benefit of looking at the detectors separately.
The SDS is beneficial since it allows for the assessment
of the sensitivity of individual detectors as opposed to
the sensitivity of an entire network and therefore pro-
vides the opportunity to run diagnostics on individual
detectors. Since the ORF is the same for a pair of detec-
tors, their individual PSDs operate as the di↵erentiating
factor between ranges.

The CBC range, as shown in Equation 6, is propor-

FIG. 11. stochastic detector sensitivity for H1 and L1 for an
hour of data. The plot shows the energy sensitivity at which
the detectors are most sensitive to stochastic data. The y-
axis is negligible due to the the necessary, not yet calculated
constant.

tional to the integral of f↵�3 over the PSD of a specific
detector. The SDS is calculated in a similar fashion to
the CBC range (Equation 7):

/
Z

(f↵�3)

(PSD)
df. (6)

For calculating the CBC range, ↵ is equal to 2
3 , re-

sulting in a numerator of f� 7
3 . The constant typically

included in the CBC range calculation has been purpose-
fully excluded.
The main di↵erence between calculating the CBC

range and the SDS is the inclusion of the ORF for a
pair of detectors in the numerator of the integral:

/
Z

(ORF )(f↵�3)

(PSD)
df. (7)

In Equation 7, the CBC range ↵ value of 2
3 is used

for calculating the SDS. The value 2
3 is attributed to the

stochastic background’s expected spectral shape given by
the superposition of numerous inspiraling compact bina-
ries. The constant needed for this calculation has been
excluded as it has not yet been computed.
The correlation between the CBC range and SDS has

been plotted and shows that there is a fairly strong cor-
relation between the two values (Figure 12). This strong
correlation is expected since both the CBC range and
SDS are dependent on the sensitivity of the same detec-
tor. There are some unexpected outliers that should be
further investigated.

VII. NEXT STEPS

One of the next steps for this project is to compute
the missing conversion constant to re-normalize the frac-
tional energy density for the SDS calculations. The con-
stant can be found using an equation for energy density
(⌦0) derived using Equations 3 and 4:
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FIG. 12. The correlation between the CBC range and SDS
for H1 for one hour of data. The correlation is fairly strong.

⌦0 =
⇢

T 1/2
f2
0

✓
2⇡2

3H0

◆✓
1
2⇡

◆ Z ✓
(ORF )(f↵�3)

PSD

◆2

df

!�1/2

.

(8)

Another next step is to turn the SDS Python script,
which calculates and plots the SDS for a given section of
data, into an executable so an entire year’s worth of data
can be assessed.
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