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Instrumental artifacts which materialize as glitches in strain data can overlap with gravitational wave
detections and significantly impair the accuracy of sky localizations of compact binary coalescence
(CBC) signals. We present our Python package, PySLIDE (Python-based Skymap Localization
with Inpainted Data Editor), which takes gravitational wave (GW) signals, removes a segment of
the data, and corrects for the removal. To make this correction, we employ a method that applies a
reweighting formula to the signal-to-noise ratio (SNR) of the signal. From tests on ≈500 simulated
GW signals, we determined that reweighting the SNR timeseries is able to improve the accuracy
over simply removing the bad data. When we repeated this process for raw data with a simulated
glitch, the reweighting formula likewise improves upon removing the data alone. In this report we
discuss the method we used to reweight the SNR, features of PySLIDE, and the results of our tests
on simulated GW signals.

I. INTRODUCTION

Detection of gravitational waves requires extreme sen-
sitivity to changes in length on the order of 10−18 m
[1]. The level of strain sensitivity renders LIGO detec-
tors susceptible to noise transients (also called glitches),
which are bursts of excess power in the detector [2]. Of-
ten, what causes these glitches is difficult to determine.
They can be the result of either external environmen-
tal or internal instrumental interactions that alter the
actual strain. Glitches are more likely to overlap with
gravitational wave (GW) events that occur for a longer
period, such as binary neutron star (BNS) events. As
detection of GW events from BNS mergers become in-
creasingly frequent [3], we expect to see more instances
of noise transients overlapping with GW signals as seen
in the case of BNS merger GW170817 [4].

Glitches are problematic for many reasons, and some
types impact rapid sky localization and by extension all
parameter estimation of GW signals. Instrumental arti-
facts can even trigger a false positive for an event, and
strategies to avoid this are in active development [5, 6]. In
the case of astrophysical signals, glitches can create false
or biased skymaps. This is significant for BNS mergers
that produce electromagnetic (EM) radiation requiring
rapid and accurate followup observation. For GW170817
and throughout the second LIGO observing run (O2),
glitch mitigation techniques were crucial to the success
of EM followup campaigns [7]. These observations are
important to growing the wider field of multi-messenger
astronomy [8] and maximizing the types of signals ob-
seved from a single event. EM followup, although im-
portant, is difficult to optimize [9, 10] and costs valuable
telescope time. When observers are given an incorrect
source location it magnifies these issues. In order to gain
useful and accurate astrophysical information from a GW

event, it is important that glitches are handled in a way
that minimizes bias in localization measurements.

There are multiple approaches one can use to address
a glitch which overlaps a GW signal. For GW170817,
the effects of the noise transient were mitigated by ap-
plying a window function to remove it [11]. Additionally,
the glitch waveform was reconstructed with an analytic
model extracted through BAYESWAVE [12] that could
be subtracted from the data [4], as shown in Figure 1.
This method is ad hoc in nature, as we do not always
have an exact mathematical model for a glitch. Different
approaches are necessary to find a generalized solution
that works instantaneously for various types of glitches.
There have already been efforts to address this issue, no-
tably the NNETFIX [13] algorithm that uses neural net-
works to model strain for gated portions of GW signals.

Window functions such as the one used for GW170817
gradually remove bad data to avoid discontinuity. How-
ever, they can introduce excess power leakage from the
spectral lines in the power spectral density (PSD) of the
detector. An alternative to window functions is inpaint-
ing [14], where the effects of discontinuities are calculated
and subtracted. The end result is a gate that only masks
bad seconds of data and has no affect on the data sur-
rounding the inpainted hole.

When we inpaint a hole in GW data, we lose informa-
tion about the amplitude and phase of a signal, which
biases the sky localization. This effect is less noticeable
when the fraction of data removed is less than . 5% of
the total signal duration. For larger inpainting widths,
this can add a significant bias to the sky localization. To
ensure localization is accurate, it is necessary to correct
for the effect of gating a portion of the signal.

To correct our skymaps for inpainting bias, we de-
veloped an algorithm to reweight the signal-to-noise ra-
tio (SNR) timeseries. Our work combines techniques to
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FIG. 1. Top panel : Time-frequency plot of LIGO Livingston
data for GW170817 with the glitch present. Bottom panel :
Strain data of the glitch, with a grey window function used
to zero it out. The reproduced model of the glitch is shown
with the blue curve. Replicated from [4].

manage glitches into a simple and computationally ef-
ficient package, and rigorously tests how our methods
perform. The goal is to recover the correct error and ac-
curacy so that the skymap includes the signal and guides
EM telescopes in the right direction.

We used the BAYESTAR [15] algorithm in the Py-
CBC search pipeline [16] to create our sky localizations.
BAYESTAR localizes GW sources using Bayesian in-
ference instead of Markov chain Monte Carlo (MCMC)
methods. It takes a likelihood function and a well-defined
parameter space to rapidly infer the location of GW sig-
nals.

In this report we explain the functionality of our
method, the setup of our Python package PySLIDE
(Python-based Skymap Localizationwith Inpainted Data
Editor), and the metrics we used to show how well it per-
forms. We determine that PySLIDE was able to recover
a more correct skymap both in the case of simulated sig-
nals with and without a glitch. Additionally, the package
is computationally efficient and has a deterministic un-
derlying formula with flexible input parameters.

II. PYSLIDE

A. Methods

For the initial set up of the underlying code, we first
use GWpy [17] to generate a PSD and get a matched filter
from PyCBC [16] to run the waveform template through
the noisy data and calculate the SNR. The matched filter
function for SNR timeseries ρ(t) is given by a weighted
inner product of the detector data s and template h(t)

where [16]

ρ2(t) =
(s|hcos)2

(hcos|hcos)
+

(s|hsin)2

(hsin|hsin)

=
(s|hcos)2 + (s|hsin)2

(hcos|hcos)
.

(1)

The inner product (s|h) is given by

(s|h)(t) = 4Re

∫ fhigh

flow

s̃(f)h̃∗(f)

Sn(f)
e2πiftdf (2)

with Sn(f) as the PSD. This function technically gives a
complex SNR, with the real part corresponding to a tem-
plate that is lined up along the data and the imaginary
part corresponding to a template that is 90 degrees out
of phase.

The SNR timeseries given by the matched filtering pro-
cess is a key input into a sky localization for a GW signal.
The other two parameters needed for a skymap are the
time delay in each detector and the phase of the signal.
We do not expect the presence of a glitch to bias the time
delay measurements or the phase, so PySLIDE focuses on
correcting the amplitude (SNR).

Once the localization parameters are input into
BAYESTAR, there are other important quantities we ex-
tract from the skymap. The credible regions (we use
50 percent and 90 percent credible regions in the algo-
rithm) represent the cumulative sum of pixels in a given
region. For example, the 90 percent credible region will
contain 90 percent of pixels in the skymap. The area
of this region is analogous to measuring the precision of
the skymap. There is also the total searched area, which
is the smallest credible region containing the location of
the source and can be thought of as a measure of the
accuracy.

B. Reweighting

As mentioned in the last section, parameters needed
to localize a GW signal are the time delay, phase and the
SNR. The presence of an inpainted hole in the data causes
the SNR timeseries to deviate. We start by assuming
we have a known signal template and input the relevant
parameters. The SNR remaining after inpainting is given
by [14]

λhole(t0, h) ≈ (|hw|2 ~ 1valid)(t0)∑
t |hw(t)|2

, (3)

where t0 is the merger time, hw is the whitened waveform,
and 1valid returns zero for a data point in the inpainted
hole and one otherwise. The equation convolves hw with
1valid, which we compute with a fast Fourier transform
(FFT) as allowed by the convolution theorem.

After we inpaint and apply Equation 3, we multiply
a normalization factor to the PSD and SNR timeseries.
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When a portion of a signal is inpainted, we effectively de-
crease the sensitivity of our measurement. Renormalizing
the PSD corrects the error for our BAYESTAR localiza-
tion. For the results shown in this report, we used a
factor corresponding to the maximum SNR value of the
timeseries calculated in Equation 3. We are effectively
reweighting the PSD and keeping the SNR the same to
ensure that BAYESTAR gets the correct error measure-
ment. If we inpaint a hole, we are losing information and
the error should increase to account for that if we want
the true source location to be included in the credible
region of the skymap. When we refer to reweighting, we
are discussing the process of normalizing the PSD to ac-
count for the correction rather than directly applying the
formula to the SNR timeseries.

There are multiple advantages of using the reweighting
method to renormalize the PSD. The algorithm is inde-
pendent of how much time is removed with inpainting
and which waveform template we use, and it allows the
user to configure these settings as inputs. Reweighting
is also deterministic - the calculation is the same for any
variation of the input parameters. It is also instantaneous
to compute, typically taking less than a second. These
benefits render this method conducive to rapid and ac-
curate sky localization of GW events in real time, even
in the presence of glitches.

C. PySLIDE Workflow

PySLIDE can apply and test the reweighting method
to any number of signal injections, though there are di-
minishing returns when you get to ≈500 injection runs.
It creates a PyCondor [18] workflow that separates each
task into jobs, which are then collected into a Dagman
[18] object to submit to a computing cluster.

There are several components of the package that cre-
ate results and plot them. The first script that reweights
the SNR timeseries using injected signal parameters and
a PSD. It creates a timeseries with the raw data, inpaints
a hole for a specified segment, applies the reweighting
formula to the SNR and PSD, and corrects for the SNR
remaining. The script outputs the SNR timeseries as an
XML file to be fed into the BAYESTAR algorithm.

BAYESTAR returns a localization as a FITS file. Us-
ing this file, we run scripts to calculate the credible region
of the true source location, the total searched area, the
area of the 90 percent credible region, and the overlap
of the reweighted and inpainted skymaps with the raw
skymap [19]. PySLIDE combines the results from all in-
jection runs into one file and then that file is used for four
different plotting scripts to visualize the final results.

The final component of the workflow is a script that
creates an HTML page showing the summary plots
front page with the performance metrics collected from
BAYESTAR for an overall view of the workflow. There
are pages showing the skymap plots and all parameters
for the individual injection runs. On the bottom of the

page there is a link to information on the command used
in terminal to run the workflow, the CONFIG file with
the initial variables, and the components of the environ-
ment used to run the workflow.

D. Testing simulated signals

To assess the performance of our reweighting algo-
rithm, we simulated 500 compact binary coalescence
(CBC) signals for testing. We used a gate width of 64
ms starting 64 ms from coincident time, set both masses
to 10 M�, and used a distance range of 10-500 Mpc. For
the waveform template, we selected SEOBNRv4 [20] and
filtered the signal template list to include what we would
expect to detect by applying an SNR threshold of 8. We
chose these signal parameters corresponding to what we
expected to be the most biased by this method. If a test
runs successfully, we verify that it is likely to work with
most other cases.

To run our tests, we inject the simulated signals into
the background PSD from the LIGO Hanford (H1) and
Livingston (L1) detectors and get the raw SNR time-
series. We then get the SNR timeseries from using
the inpainting function alone, then both inpainting and
reweighting. We create an XML file which is put into
BAYESTAR to localize all three cases. To see how the
method performs, we obtain the credible region, searched
area, the area of the 90 percent credible region, and the
overlap.

After testing cases for raw data without a glitch, we
wanted to see if we could create a glitch that biased the
skymap and recover the source location by reweighting.
We injected a sine-gaussian wavelet with a frequency of
80 Hz and strain of 2.5 × 10−21 m. We then created
skymaps using the same method as the data without a
glitch and obtained the same metrics from BAYESTAR
to see if we corrected the glitch and inpainting bias.

III. RESULTS

A. Raw data without a glitch

Various metrics from BAYESTAR allow us to deter-
mine how reweighting compares to inpainting alone. We
primarily use probability-probability (P-P) plots show-
ing the credible region of the true source location vs. the
fraction of total simulated signals (Figure 2). Ideally, the
distribution on a P-P plot is linear with a slope of one.
Due to an internal factor in BAYESTAR to normalize
the plot in GstLAL, the raw data without the glitch lies
above the diagonal. This distribution above the diagonal
is therefore ideal for our plots made using the PyCBC
pipeline.

One implication from the plot we created is that in-
painting a hole in the data will bias the skymap and
report an incorrect error. When we reweight the SNR
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FIG. 2. P-P plot for data without a glitch showing the cred-
ible region returned by BAYESTAR of the true source loca-
tion. Due to the normalization factor in BAYESTAR meant
for the GstLAL pipeline, we can see the raw and reweighted
lines are overestimating the error. This causes the lines to
inflate above the diagonal. From this plot we can determine
that inpainting a hole in the data causes the error to be un-
derestimated, and reweighting recovers some of the error.

timeseries, the error is recovered and the skymap is more
likely to return a localization that contains the source.

When we find the correct normalization to apply to
the PSD, the reweighted P-P plot will line up with the
raw data without a glitch and we will be accounting for
the increase in error after inpainting.

FIG. 3. Histogram showing the total searched area without a
glitch by BAYESTAR in degrees vs. the cumulative sum of
signals. The raw data in blue is the closest to the ideal distri-
bution. Inpainting a hole causes the searched area to deviate
and reweighting corrects for this effect by getting closer to the
expected curve.

To check if the skymap shows an accurate credible re-
gion, we create a histogram of the total searched area
in degrees (Figure 3). The searched area we refer to is
the area of the credible region housing the true source
location. Ideally, the cumulative area drops off faster as
the searched area increases. This demonstrates that the
resulting skymap predicts the source location to be in the
lower credible region.

Similar to the results of the P-P plots, the searched
area histograms show reweighting the data gets the dis-
tribution closer to the original data.

FIG. 4. Histogram showing the area of the 90 percent credi-
ble region on the skymap, which we use to roughly estimate
the precision of our measurement. Because we are not actu-
ally changing the SNR timeseries and reweighting the PSD to
make sure we account for the loss of sensitivity, the curves on
this graph should line up with each other which appears to
be the case.

For the area of the 90 percent credible region as seen
in Figure 4, we expect the distributions for all three data
sets to be roughly similar. The area is a way of mea-
suring the precision of our skymaps, which is calculated
using the SNR. Since the reweighting method used is only
applied to the PSD to account for loss of sensitivity, we
do not expect the precision to change. Figure 4 shows a
distribution that agrees with our expectations.

The overlap in Figure 5 is only a meaningful metric
when the raw data has no glitch present. For the ideal
distribution, 90 percent of signals should have an overlap
of 90 percent or greater with the raw skymap. The in-
painted histogram does not follow this distribution, while
the reweighted histogram does.

B. Raw data with a glitch

For the data with a simulated glitch close to the time
of merger, we created the same figures to determine if
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FIG. 5. Histogram showing the overlap of the inpainted and
reweighted skymaps with the raw skymap. This plot is only
an important performance metric when the raw data has
no glitch and we can assume that it represents the correct
skymap. The ideal curve has 90 percent of signals to the right
of the line marking 90 percent on the x axis. If a fraction of
signals fall to the left of that line, then we can assume that we
will miss detections of those signals. We see this happening
more for the inpainted curve, showing that we effectively miss
more detections when the reweighting formula is not applied.

FIG. 6. P-P plot with a glitch showing the credible region re-
turned by BAYESTAR of the true source location. Due to the
normalization factor in BAYESTAR meant for the GstLAL
pipeline, we can see the raw and reweighted lines are overes-
timating the error. This causes the reweighted line to inflate
above the diagonal. From this plot we can determine that a
glitch in the data underestimates the error, which we are able
to improve with inpainting and even more by reweighting the
signal-to-noise ratio (SNR).

reweighting recovers a more accurate skymap than in-
painting alone. For the P-P plot in Figure 6, the glitch
biases the error estimate in BAYESTAR. Inpainting cor-
rects for some of the error, and reweighting gets a more
accurate estimate than inpainting.

FIG. 7. Histogram showing the total searched area with a
glitch by BAYESTAR in degrees vs. the cumulative sum of
signals. The raw data in blue shows the glitch impairs skymap
accuracy. Inpainting a hole brings the searched area closer to
the ideal distribution and and reweighting does slightly better.

The searched area plot in Figure 7 displays a similar
behavior. We see that a glitch biases the accuracy of
the skymap in the raw data, and it is recovered best by
reweighting.

The area of the 90 percent credible region shown in
Figure 8 shows the inpainted and reweighted histograms
agree with each other. We can determine from this that
the precision of our measurements stay the same after
the reweighting method is applied. For the raw data
with a glitch however, the 90 percent credible area is
significantly biased. Not only does a simulated glitch
impair accuracy, but the precision deviates as well.

IV. DISCUSSION

One important takeaway is that we created a glitch
that was able to bias the sky localization of a simulated
source. The sine-gaussian that we injected into the signal
data is not an unlikely model for real glitches observed
in the LIGO detectors. We can conclude from these re-
sults that some form of mitigation during low-latency is
necessary for accurate sky localization of real sources.

In addition to showing a glitch was able to bias a
skymap, data without a glitch reveals the inpainting pro-
cess contributes its own bias. This was a noticeable effect
even with a gate of 64 ms (less than a tenth of a sec-
ond) that we used on the tests shown previously. Other
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FIG. 8. Histogram showing the area of the 90 percent credi-
ble region on the skymap, which we use to roughly estimate
the precision of our measurement. Because we are not actu-
ally changing the SNR timeseries and reweighting the PSD to
make sure we account for the loss of sensitivity, the curves on
this graph should line up with each other. The inpainted and
reweighted areas line up, but the glitch we created induces a
bias on this measurement and affects the overall precision.

tests we conduced show the same bias for larger gate
widths that could be necessary for certain types of ob-
served glitches such as slow-scattering. In addition to
the localization bias, we see from Figure 8 that inpaint-
ing alone results in a larger fraction of real GW signals
becoming undetectable than if we use reweighting. If the
raw data has a glitch, inpainting does recover some accu-
racy. However, PySLIDE improves upon it significantly
with a relatively simple calculation.

In further observing runs we expect the sensitivity of
the detectors to increase and to detect more events. This
means it is more likely there will be instances of slow-
scattering and other long-lasting glitch types overlapping

signals from BNS mergers. The method presented here
is one of the few in active development that can handle
these types of noise transients, and could be useful when
long gates are necessary.

V. CONCLUSION

For upcoming LIGO observing runs, it is imperative
that we have a way to to mitigate instrumental artifacts
in the detector instantaneously. Quick and reliable sky
localization of gravitational wave signals allows us to ex-
pand the field of multi-messenger astrophysics.

We demonstrated that glitches and removing segments
of a GW signal are sources of bias in sky localization and
parameter estimation of a source. From our results we
can see that reweighting the SNR timeseries was able to
correct for this bias in both cases to return a localization
that is more accurate than inpainting alone.

We are working on developing more features for PyS-
LIDE, including expanding options for the noise gate and
BAYESTAR plotting. Mainly we will test the method
further by exploring a wider parameter space and see-
ing how our package handles various types of injected
signals and glitches. We anticipate that some version
of PySLIDE with these expanded features will be made
available publicly before the next observing run.
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