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The detection of gravitational waves is instrumental to our understanding of astrophysical pro-
cesses and the fate and evolution of the sources of such waves. One source of gravitational waves
is compact binary coalescences (CBC’s)–binary systems which consist of black holes, neutron stars,
or both. Here, we examine neutron star binary systems and their intrinsic and extrinsic parame-
ters and determine how to optimize data intake to improve the localization of such systems. We
confirm that longer signal durations maximize relevant information we can extract from the signals
but increase typical computing efforts. For analyses where prompt results are essential, such as for
multi-messenger followup, we present the ideal conditions for fast and accurate analysis.

I. INTRODUCTION

Since commencing observing operations in 2015,
the Advanced LIGO and Advanced Virgo detectors
have discovered a plethora of gravitational waves.
Their first gravitational wave transient catalog in-
cludes ten binary black hole coalescences and one
binary neutron star coalescence. Additionally, an
updated second gravitational wave catalog from the
third observing period has yielded dozens more
events, with signals encompassing even more com-
pact binary coalescences [1].

The binary neutron star merger was detected
through GW170817 [2]; the first signal from this low-
mass, compact binary inspiral was detected August
17, 2017, and was inferred by astronomers to be lo-
cated in the NGC 4993 galaxy. Gravitational waves
from binary neutron stars exhibit a chirplike, or
frequency-increasing, time evolution which to lead-
ing order depends both on the system’s chirp mass
with additional contribution from its mass ratio and
spins. Also unique to neutron star systems is the
influence of their internal structure on its waveform;
such properties can be inferred from tidal interac-
tions.

The localization of GW170817 to the NGC 4993
galaxy was aided by the skymap that was computed
from gravitational wave data. Once the skymap
was constructed, astronomers were able to follow up
on this data and were able to localize the source
within a few hours after initial detection. This initial
skymap took around 4-5 hours to be sent out, and an
updated version using methods relying on Bayesian
inference took about 10 hours. Figure 1 demon-
strates the improved localization of GW170817 from
gravitational wave data alone due to re-calibration
of Virgo data. Assuming the previously deduced lo-
cation in NGC 4993, the 90% localization region was
reduced from 28 deg2 to 16 deg2.

Aiding in this endeavor of gravitational wave de-
tection is BILBY [3], a Bayesian inference library

which infers source properties from individual sig-
nals of compact binary coalescences. For any anal-
ysis, BILBY is able to vary certain source param-
eters and produces samples from the posterior for
the source parameters. Some parameters may re-
main fixed while others are sampled; for example,
sky parameters are frequently fixed for GW170817
analyses since its exact location is known. To date,
BILBY has produced reliable results for both simu-
lated and real gravitational wave data from compact
binary mergers and coalescences.The recovered sim-
ulated parameters are consistent with the injected
parameters, and the inferred parameters from real
signals are consistent with other pipelines. Using
these source properties, in upcoming observing runs
BILBY will be used to compute skymaps which will
then be utilized by astronomers to localize the grav-
itational wave signal sources, such as in the case of
GW170817.

II. MOTIVATIONS

Gravitational wave data allows for localization of
the source signal itself, upon which astronomers may
then search to identify the exact location of the CBC
event. Ideally, this continuous process of intaking
gravitational wave data and computing the subse-
quent skymap should occur in as minimal a time-
frame as possible, since an electromagnetic signal
from the CBC event could fade rapidly within the
span of a few hours or even minutes. The runtime
will vary depending on which parameters are sam-
pled but ideally should last from a few minutes up
to half an hour.

For every signal analysis, there exists a trade-off
between accuracy and computational efficiency. A
typical BNS signal may last for a span of up to two
minutes with a frequency of interest for the analysis
ranging from 20 Hz to 2000 Hz; Figure 2 shows such
an example of a BNS signal. Conversely, the amount
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Figure 1. The improved localization of GW170817, with
the dotted gray line indicating previous localization of
90% credibility from 2017 and lighter and darker green
regions corresponding to increased region credibility of
50% and 90%, respectively, in 2019. The electromagnetic
counterpart of GW170817 was found based on the 2017
skymap.

of time it takes to compute the associated skymaps
may range from a few hours to even months, depend-
ing on various factors including models and tools
for analyses. This proves problematic when we con-
sider that the electromagnetic signal from the CBC
event may last only up to a few hours at most and a
skymap must be computed and distributed for astro-
nomical follow-up as soon as possible. As such, we
explore how settings such as segment length, sam-
pling rate, and the sampler dictionary may be opti-
mized in order to achieve reliable sky localization in
a minimal timeframe. The segment length is the du-
ration of the signal we are analyzing; the sampling
rate is the number of samples taken per second, and
the sampler dictionary allows us to vary the sampler
we use and its functions.

Figure 2. Spectrogram of GW170817 from the LIGO
Hanford detector with the merger placed at the 0 second
time mark. Frequencies of 40, 80, and 200 Hz, respec-
tively, are overplotted in red; these correspond to various
times that different parameters may be inferred.

Ultimately, many inferred source parameters
through gravitational wave data of merging binary
neutron stars will be further improved by and elec-
tromagnetic detection and identification of the host
galaxy. These include specific properties of the bi-
nary system itself, such as its mass, spin, and tidal
parameters, which may also better equip our general
understanding of binary. Improved localization may
also better our understanding of short gamma-ray
burst properties and, on a grander scale, the equa-
tion of state of neutron-star matter, the nature of
gravity, the value of the cosmological constant, and
even allow us to test the theory of general relativity.

III. METHODS

A. Bayesian Inference

We rely on Bayesian inference for this project. We
begin with a posterior probability distribution which
is calculated using Bayes’ Theorem:

p(θ|d) =
L(d|θ)π(θ)

Z
(1)

Here θ represents the source parameters, L(d|θ) is
the likelihood function, or probability of the detec-
tors measuring data d assuming a model hypothesis,
π(θ) is the prior distribution, which incorporates any
prior knowledge about our parameters, and Z is the
normalization factor, or evidence, which is defined
as:

Z =

∫
L(d|θ)π(θ)dθ (2)

This evidence indicates how well the data is modeled
by the hypothesis, which is vital for model selection.
In this case, the posterior probability distributions
are calculated by BILBY, and we apply restricted
analysis by focusing on restricted parameters and/or
timeframes in order to narrow down the posterior
distribution area. Ultimately the parameters that
we are primarily interested in are the sky location
and the distance to the source, but we also consider
some intrinsic parameters such as masses, spins, and
tidal deformability.

B. Stochastic Sampling

To generate its posterior distributions, BILBY re-
lies on two types of stochastic sampling, where in-
dependent samples are drawn randomly from the
parameter space; these two methods are the Monte
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Carlo Markov Chain (MCMC) and nested sampling.
For MCMC, particles within the given parameter
space will take a “random walk” along the posterior
distribution. The probability of a particle going to a
certain position is determined by the Markov chain
transition probability. On the other hand, nested
sampling initially calculates the evidence instead of
drawing samples from the posterior, which is gen-
erated as a byproduct. For nested sampling, the
parameter space contains a certain number of live
points drawn from the prior distribution. For every
iteration, the lowest likelihood live point is removed;
this process continues until the entire prior distribu-
tion has been sampled [4].

The default sampler that BILBY uses is
Dynesty [5], which utilizes both MCMC and nested
sampling. First, Dynesty extracts N number of like-
lihood live points from the prior, which is controlled
by the setting nlive. The uniform sampling is itera-
tively improved by selecting new live points through
random walkers using the MCMC algorithm [3]. The
setting maxmcmc determines the maximum number
of random walkers used. Both nlive and maxmcmc
impact runtime and efficiency of CBC analyses, and
we experiment with these settings for this project.

IV. PROCEDURE AND RESULTS

For all our injections, we use BILBY PIPE, a
Python package which automates the process of run-
ning BILBY on a computing cluster [3] due to the
large volume of data. We have analyzed several of
these run results using PESummary, a parameter es-
timation summary page builder which compiles rel-
evant data into a user-friendly and comprehensible
webpage [6].

A. Priors

To begin our analysis, certain settings for the prior
needed to be implemented. Instead of sampling over
the individual mass components, we use the mass
ratio:

q =
m2

m1
6 1 (3)

and chirp mass:

M =
(m1m2)3/5

(m1 +m2)1/5
(4)

because it is easier and faster to sample over these
parameters.

Next, we substituted the six separate spin param-
eters ai, tilt i, and phi jl and phi 12, with the
single spin parameter Xi, one for each neutron star;
the former constitute the dimensionless spin mag-
nitude and associated angle parameters, while the
latter is the ith object aligned spin, or the projec-
tion of the ith object spin onto the orbital angular
momentum:

Xi = aicos(θi) (5)

Since we use nonprecessing injections for this project
where all spin magnitudes and angles are set to zero,
using chi i is computationally more efficient be-
cause it gives us less parameters to sample over.

B. Optimal Settings for Runtime

Two of the primary settings that we experiment
with are the segment length, or time duration of the
signal we are analyzing, and sampling rate, or num-
ber of samples taken per second which corresponds
to half the highest frequency of the signal that we
analyze. We use decreasing segment lengths from
128 seconds down to 16 seconds and sampling rates
from 2048 Hz down to 128 Hz. Both the sampling
rate and segment length have a direct relationship
with the runtime; the larger the segment length and
sampling rate, the longer the runtime, as Figure 3
demonstrates. The sampling rates of 2048 Hz and
1024 Hz took such a large amount of time to run
that for practical purposes, those rates should not
be used for successful multi-messenger followup ef-
forts. However, sampling rates of 512 Hz and below
proved more realistic with a maximum runtime of
69.5 hours and a minimum runtime of 40 minutes.

Figure 3. Heat map showing the effects of sampling rate
and segment length settings on runtime. Smaller sam-
pling rates and segment lengths result in a shorter run-
time.
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C. Varying the Segment Length and Sampling
Rate

After comparing the runtimes, we then proceed to
compare how the different settings impact the pos-
terior distributions that are generated. For these
injections, we use three detectors–LIGO Livingston,
LIGO Hanford, and VIRGO–and inject noise as well.
We fix either the segment length or the sampling rate
and then vary the other setting to see how removing
available data reduces the accuracy of the marginal-
ized posteriors that are returned. Two parameters
that are particularly affected by data reductions in-
clude the chirp mass and effective spin. Chirp mass
and effective spin are primarily inferred along lower
frequencies in the signal, and so decreasing the seg-
ment length, which removes lower frequency data,
would cause the posterior distribution to be wider,
as shown in Figures 4 and 5. This effect in chirp
mass is even more prominent when we use a lower
sampling rate, as shown in Figure 6; nonetheless, all
of the posteriors still agree with the true value that
is denoted by the black vertical line.

Figure 4. Posterior distribution for chirp mass at a sam-
pling rate of 256 Hz with decreasing segment lengths.

Conversely, tidal parameters in binary neutron
star systems are mostly inferred among higher fre-
quencies. Decreasing the sampling rate removes
higher frequency data, so fixing the segment length
while varying the sampling rate should exhibit the
same pattern in the tidal parameter distributions as
in the previous examples with chirp mass and ef-
fective spin. Our recent runs so far have produced
the expected tidal parameter posterior distributions
only for higher sampling rates of 2048 Hz and 1024
Hz as shown in Figure 7. However, at lower sam-
pling rates there is not as much information to be
extracted about the tides compared to the higher
sampling rates, and so the posteriors look fairly sim-

Figure 5. Posterior distribution for effective spin at a
sampling rate of 512 Hz with decreasing segment lengths.
The peak offset from the true value is due to the well
known correlation between effective spin and mass ratio
and is seen in all signals, both real or injected.

Figure 6. Posterior distribution for chirp mass at a sam-
pling rate of 128 Hz with decreasing segment lengths.

ilar.

Although not as drastic as the chirp mass and ef-
fective spin examples, the luminosity distance also
exhibits a similar, albeit more subtle, pattern as the
posterior distributions for the aforementioned pa-
rameters when one decreases the sampling rate for a
constant segment length, as shown in Figure 8. This
shows that a decreased sampling rate of 256-512 Hz
does not affect the distance posterior generation as
much, since all relevant information for the distance
has already been obtained from lower frequencies.
However, continuing to decrease the sampling rate
will cause the loss of valuable information from low
frequencies.
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Figure 7. Posterior distribution for tidal deformability at
a segment length of 16 seconds with decreasing sampling
rate.

Figure 8. Posterior distribution for luminosity distance
at a segment length of 16 seconds with decreasing sam-
pling rate.

D. Skymaps

Removal of certain frequencies of data by decreas-
ing the sampling rate or segment length also affects
the accuracy of skymaps generated from our BNS in-
jections. In general, decreases in both the sampling
rate and the segment length exhibit a similar pattern
for the reduced accuracies. The following skymaps
are all generated from an injected sky location of a
right ascension of 4.2 and a declination of -0.7. Fig-
ure 9 shows how a decreasing sampling rate for a con-
stant segment length of 32 seconds produces a worse
constrained sky location posterior distribution; how-
ever, the highest shown sampling rate of 512 Hz gen-
erates an extremely well constrained skymap, which
Figure 10 zooms in on. A similar pattern in the

Figure 9. Skymaps generated at a segment length of 32
seconds with decreasing sampling rate.

Figure 10. Zoomed in skymaps generated at a segment
length of 32 seconds with decreasing sampling rate.

accuracy and constraint of skymaps occurs for other
fixed segment lengths with varying sampling rates,
such as in Figure 11, as well as for fixed sampling
rates with decreasing segment lengths, as in Figure
13.

From Figure 12, we see that as the segment length
decreases and less data is retrieved, we obtain a
worse localization in return. A sampling rate of 512
Hz produces a very well constrained sky localization
with a 90% credible region of 2 deg2 and a 50% cred-
ible region of 1 deg2 according to the PESummary
generated skymap; this run was completed in around
12 hours. Although not as well constrained as the
512 Hz run, a sampling rate of 256 Hz still generates
a fairly well constrained skymap with a 90% credi-
ble region of 15 deg2 and a 50% credible region of 3
deg2. The runtime for these settings was around 2/3
of an hour, which is pragmatic and within a reason-
able margin of time in which a counterpart electro-
magnetic signal from a binary neutron star system



6

Figure 11. Skymaps generated at a segment length of 16
seconds with decreasing sampling rate.

Figure 12. Skymaps generated at a sampling rate of 128
Hz with decreasing segment lengths.

might be visible and detectable for multimessenger
followup.

V. CONCLUSIONS AND FUTURE WORK

From these results we have identified the ideal set-
tings for generating skymaps of neutron star bina-
ries via Bayesian inference in a minimal time frame.
We may confirm that both a smaller sampling rate
and segment length lead to a shorter runtime. We
also conclude that the removal of certain data fre-
quencies from our analysis results in less accurate
posterior distributions for certain parameters such
as the chirp mass and effective spin. Assuming O3
design sensitivity and setup, we have successfully lo-
calized an injected binary neutron star source up to
80 Mpc–twice the distance of the signal GW170817–
away very well with a reasonable runtime.

One area to experiment upon in the future would
be the generation of skymaps for different locations
in the sky. We may also experiment with the number
of detectors used in runs–including versus excluding
the VIRGO detector–and see how those results com-
pare. Another area of exploration lies in the sampler
dictionary. So far we have merely reduced nlive to
500 from a default of 1000 and maxmcmc to 3000 from
a default of 5000 in an attempt to reduce the run-
time; however, in the future we may reduce these
even more and compare how various values of these
sampler settings impact the runtime.
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