LIGO-T2100196

Optimal Settings for Fast Low-Latency Skymaps of Neutron Star Binaries

Celine Wang, Mentors: Katerina Chatziioannou and Isaac Legred

Motivations and Methods

What? Determine the best settings for prompt and reliable skymap estimation

Why?

Improve localization of signal sources by returning information ASAP

How? Parameter estimation, Bayesian inference, sampling, BILBY

Signal track of GW170817

Localization of GW170817

B. Abbott et al., Properties of the binary neutron star merger GW170817, (2019), arXiv:1805.11579

Parameters

Intrinsic:

• Mass • Chirp mass:

$$\mathcal{M} = rac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}.$$

• Mass ratio:

$$q = m_2/m_1 \leqslant$$

- Spin (magnitudes and angles)
- Tidal deformability (BNS)

Extrinsic:

- Inclination and polarization angles
- Phase
- Time
- Distance
- Right ascension
 (longitude)
- Declination (latitude)

BILBY

Bayesian inference

Given the **likelihood**, **prior**, and **evidence**, we want to find the **posterior probability distribution**.

where θ =parameters, d=data

Stochastic Sampling

- Two types: Monte Carlo Markov Chain (MCMC) and nested sampling
- MCMC
 - Random walk along posterior distribution
- Nested sampling
 - Live points drawn from prior distribution, lowest likelihood point removed each iteration
- Bilby's default sampler, Dynesty, uses both of these

Optimal Settings for Runtime

Srate=512 Hz

Seglen=32 sec

Conclusions

- Smaller sampling rate and segment length lead to a shorter runtime.
- As we remove certain frequency data (eg. decrease segment length/sampling rate), we end up with worse posterior results for certain parameters like mass and spin.
- Assuming O3 design sensitivity and setup, we are able to localize a BNS source up to 80 Mpc away very well, with a reasonable runtime.

Acknowledgements

I would like to thank the NSF and Caltech for providing me this research opportunity. I would like to thank my mentors, Katerina and Isaac, for guiding and supporting me throughout this project.

Thank you! Questions?

