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The elastic properties of multilayer coatings determine the thermal noise imposed on beams 
reflected from interferometer mirrors. Those properties are not simple averages of the properties 
of the individual layers making up the coating, and the averaged properties that enter into modeling 
thermal noise and are different from those entering into measurement of the loss via the Q of 
mechanical resonators. It is the purpose of this document to establish a unified description of these 
elastic multilayers through the use of an effective medium theory for both isotropic (amorphous) 
and cubic (AlGaAs, AlGaP) layers that is applicable both for noise calculations and for analyzing loss 
measurements. 

The effective medium approach is applicable when the variation of the elastic fields, other than that 
due to the layering itself, is slow compared to the thickness of the layer C∞ s. By combining the 
constitutive relations (Hooke’s Law) for the elastic stiffness in each layer with the continuity 
conditions for certain components of the stress and strain tensors, one can arrive at the connection 
between the stress and strain averaged over the layers, described in terms of an effective stiffness 
tensor computed from combinations of the stiffness tensors in each of the layers. Because the 
layering breaks the symmetry of the structure, the symmetry of this effective stiffness tensor will be 
lower than that of the layers themselves. In the two cases considered here: for isotropic layers the 
effective stiffness tensor has C∞ symmetry, while for cubic layers the effective stiffness tensor has 
tetragonal symmetry.  

This document is organized as follows: Section 1 establishes the effective stiffness tensor for 
isotropic and cubic layers. Section 2 uses the effective medium description to evaluate the stresses 
and strains in a thin multilayer coating in terms of the stresses and strains in the underlying 
substrate, and uses these elastic fields to compute the elastic energy density and power dissipated 
in the coating in terms of the substrate fields. Section 3 contains two applications of these results: 
computation of the thermal noise due to a mirror coating, and computation of the loss contributed 
by the coating in the measurement of the Q of a mechanical resonator. Section 4 is an appendix 
compiling relations between the various forms used to describe the mechanical properties of 
isotropic media, and giving results for integrals involved in the thermal noise calculation. 

1. Formulating the effective medium 

1.1. Symmetry of elastic multilayers 

In an isotropic medium, the elastic properties are the same for stresses applied in any direction. 
This ceases to be true in a multilayer made up of isotropic media, because the layering makes the 
direction normal to the layers different from the in-plane directions, which remain essentially 
isotropic. Such a symmetry is known as C∞. For fourth-rank tensors like the elastic stiffness, the 
implications of C∞ symmetry are the same as for hexagonal point groups, with the layer-normal 
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direction taking the role of the 6-fold (or z) axis. Hook’s law in such a medium is expressed in terms 
of its stiffness tensor in the form 
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Here the second-rank stress (T) and strain (S) tensors are given in the Voight notation, where (1, 2, 
3, 4, 5, 6) correspond to (xx, yy, zz, yz, xz, xy). Details can be found in B.A. Auld, Acoustic Fields and 
Waves in Solids, vol. 1, Wiley (1973), referred to hereafter as “Auld”. One note on notation: the 
engineering (or Voight notation) strain 6 2 / /xy x yS u y u xε= = ∂ ∂ + ∂ ∂ (see Auld Eq. 1.52 and page 56). 
This factor of 2 appears only for shear strains, not for compressions.  

1.1.1. Isotropic layers 

In an isotropic medium the tensor takes the same form as Eq. (1.1.1), but with 

 13 12 33 11 66 44, ,  c c c c c c= = =   

Note that there is an additional symmetry constraint on the elements of the C∞ stiffness tensor, 

66 11 12( ) / 2c c c= − [in isotropic media: 44 11 12( ) / 2c c c= − ] , so that there are 5 independent elements 
in the C∞ tensor, as compared to the 2 independent elements for an isotropic medium. Thus, 
describing the multilayer in terms of two quantities, like the Young’s modulus and the Poisson ratio, 
or the bulk and shear moduli, is inappropriate.   

1.1.2. Cubic layers 

Note also that the form of the stiffness tensor for cubic media is the same as isotropic media, with 
the exception that the symmetry constraint 44 11 12( ) / 2c c c= −  does not hold, so the stiffness tensor 
for layers of cubic materials will have the same form as Eq. (1.1.1), but again without the symmetry 
constraint 66 11 12( ) / 2c c c= − . Thus, a material made of cubic-symmetry layers will have 6 
independent elements (as does a tetragonal point group like 4mm). All of the results given here in 
terms of stiffness tensor elements, for example the form of the averaged effective-medium stiffness 
coefficients given in Eq. (1.2.10) will apply to cubic layers as well. Those results that rely explicitly 
on the isotropy of the individual layers, such as those involving Young’s modulus and Poisson ratio 
(e.g. Eq. (3.1.11)) of course cannot be applied to cubic layers.   

It is the purpose of this section to derive the connection between the properties of the layers 
making up the film, and those of an effective medium of the symmetry shown in Eq. (1.1.1). The 
individual layers for both isotropic and cubic layers will be described again by a stiffness tensor for 
computational convenience, though the elements of that tensor for isotropic media can all be given 



in terms of more conventional terminology like Young’s modulus and Poisson ratio (see Appendix 
for those connections).  

1.2. Effective medium analysis 

The effective medium approach is applicable when the variation of the elastic fields, other than that 
due to the layering itself, is slow compared to the thickness of the layers. We can then apply a local 
averaging procedure to find an effective stiffness tensor, [ ]c , that accurately approximates the 
response of the layered medium to applied stresses T and strains S , also averaged over a period of 
the layer. We follow the approach of G. Backus, “Long-Wave Elastic Anisotropy Produced by 
Horizontal Layering,” Journal of Geophysical Research 67, pp. 4427-40 (1962), hereafter referred to 
as “Backus”. The essence of the approach is to arrange the components of the constitutive relations 
in forms that do not contain products of quantities discontinuous at the interface between the 
layers. The required averaging is then conceptually straightforward, though in some case somewhat 
involved algebraically.  

We assume a structure containing alternating layers of materials A and B, with thicknesses dA and 
dB and stiffness tensors cA, and cB. We define an averaging operator by  

 A B
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A B A B
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 (1.2.1) 

where gA is any quantity or combination of quantities in layer A. The analysis begins by noting that 
the in-plane strains (S1, S2, S6) and the surface normal stresses (T3, T4, T5) are continuous across the 
layers.  

1.2.1. Shears 

Consider first the shears, since they are simpler than the compressions. According to the isotropic 
form of Eq. (1.1.1), in each layer we have  
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where J ( , )A B∈ . In order to apply the averaging required for the effective medium approach, we 
need to arrange Eqs. (1.2.2) so that they contain no products of discontinuous quantities: 
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In this form, the averaging function in Eq. (1.2.1) is straightforwardly applied: 
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Comparing with Eq. (1.1.1) we see that  

 
11

44 55 44

66 44

c c c

c c

−−= =

=
 (1.2.5) 

The different types of averaging involved can be thought of as analogous to averaging springs in 
series vs springs in parallel.  

1.2.2. Compressions 

The concept is the same for finding the effective stiffness components for the compressions, but a 
bit more work is involved due to the inherent coupling between them due to Poisson’s ratio. Begin 
again with the relations in each layer given by the isotropic form of Eq. (1.1.1) 
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where we already denote the continuous fields with overbars. With the third of Eqs. (1.2.6), we can 
arrange to have an “averageable” RHS for all three of Eqs. (1.2.6): 
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Carrying out the averaging for the first of Eqs. (1.2.7) 
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Carrying out the averaging for the second two of Eqs. (1.2.8) and replacing 3T with the second of 
Eqs. (1.2.8) yields 
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  (1.2.9) 

Comparing with Eq. (1.1.1), we have for the effective stiffness components 
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where we have also listed here the shear elements from Eq. (1.2.5) for completeness. 

1.3. Stress-free layer in terms of Young’s modulus and Poisson ratio 

For comparison with more conventional analyses, it is interesting to work through the same 
calculation in terms of an effective Young’s modulus and Poisson ratio. Rather than work out the 
complete tensor, we focus for simplicity on those elements pertinent to the case of layers with a 
stress-free normal surface. We also do not compute S3 since it will not contribute to the energy 
density when T3 = 0. 

Hooks law for in-plane strains of an isotropic medium with T4 = T5 = T3 = 0 is  
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Its inverse is  
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Conveniently, all the fields on the RHS are continuous across interfaces, so that the averaging 
process is straightforward. We have  
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Inverting this matrix we have 
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where the * represent the components known by symmetry from the others.  

Comparing Eq. (1.3.4)with Eq. (1.3.2) we identify the effective medium quantities 
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and 
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where second form for σ follows with Eq. (1.3.5) for Y . If these are consistent, we should have for 
the shear element 
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Substituting into Eq. (1.3.7) from Eqs. (1.3.5) and (1.3.6) shows that it in fact is obeyed, so we have 
for the effective quantities 
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where we add subscripts as a reminder that these hold for in-plane stresses and strains, while there 
will be different effective quantities for out-of-plane fields. 

2. Thin Effective Medium on a Substrate 
One can in a general case include a stiffness tensor in the form of Eq. (1.1.1) with elements 
calculated from the layers’ material properties with Eqs. (1.2.10) into FEM calculations to obtain 
results for the elastic state of the composite layer. Here we assume that one can adopt the method 
of GM Harry et al, “Thermal noise in interferometric gravitational wave detectors due to dielectric 
optical coatings,” Class. Quantum Grav. 19, 897 (2002), hereafter referred to as “Harry”, where the 
elastic fields in the substrate are calculated independent of the mirror layer, and then the fields in 
the layer are computed treating those at the surface of the substrate as boundary conditions on the 
layer.  

2.1. Boundary condition treatment of composite layer 

Let us assume that the elastic fields in the substrate are known, and in particular that the in-plane 
strains and the surface-normal stresses in the substrate are S1s, S2s, S6s and T3s, T4s, T5s, respectively. 
We further assume that the surface of the layer away from the substrate is not subjected to any shear 
stresses. The continuity of the surface-normal stresses and in-plane strains then allows us to 
conclude that the surface-normal shears vanish in both the film and the substrate, and therefore that 
the fields in the film obey 
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We can then use these fields and Eq. (1.1.1) to compute S3, T1, T2, and T6 in the film. With these 
fields in hand, the energy in the film can be calculated, either for a thermal noise calculation or to 
evaluate the energy ratio in a loss measurement.  

2.2. Field energy in the layer in terms of boundary fields 

With Eqs. (1.1.1) and (2.1.1) we have  

 

1 11 1 12 12s 13 3

2 12 1 11 12s 13 3

3 13 1 13 2 33 3

6 66 6

s

s

s s s

s

T c S c S c S
T c S c S c S
T c S c S c S
T c S

= + +
= + +
= + +
=

 (2.2.1) 



The shear stress in the film is obviously trivially obtained, so the work again is in working out the 
compressional fields. The equation for T3 yields  
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With S3 from Eq. (2.2.2) in Eqs. (2.2.1) for T1 and T2 we find 
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With Eqs. (2.2.2) and (2.2.3), along with Eqs. (2.1.1), we now have all the fields in the layer in terms 
of those in the substrate, so can calculate the elastic energy density in the film according to  
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We are primarily interested in the power dissipated in the film. Here we must be careful and not 
simply assign complex values to the elastic constants (e.g. the imaginary part of the coefficient 

331 / c will have opposite sign to that of c11, which doesn’t make physical sense as both should add to 
the total loss). To evaluate the dissipated power, we return to the expression for the rate at which 
work is done on a deformed elastic body (L. D. Landau and E.M. Lifshitz, Theory of Elasticity, Course 
of Theoretical Physics Vol. 7, 1975): 
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ε
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In Voight notation, and for sinusoidal time dependence exp(iωt), the average dissipated power per 
unit volume is then 
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With the fields from Eqs. (2.2.2) and (2.2.3), Eq. (2.2.6) becomes 
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where the second form follows from taking the negligibly lossy substrate fields as real.  

We can evaluate the combinations of effective stiffness elements in Eqs. (2.2.4) and (2.2.7) in terms 
of the layers’ properties according to Eq. (1.2.10). We find 
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With Eqs. (2.2.8) for the effective stiffness components in terms of the layer properties, Eq. (2.2.4) 
for the energy density in the film becomes  
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and the dissipated power from Eq. (2.2.7) becomes
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where the third form follows from defining the in-plane dilation as 1 2DS S S≡ +  and the anti-
symmetric strain as 1 2S S S∆ ≡ − , and the last form holds for isotropic layers recalling the isotropy 
condition for the elastic constants 11 12 442c c c− = . Noting that the dilation is invariant to coordinate 

rotations, and that 2 2
, 6,s sS S∆ + is invariant to rotations around z, the final forms of Eqs. (2.2.9) and 

(2.2.10) can be seen to be explicitly invariant to rotations around the surface normal.  

Note that some of the terms in Eq. (2.2.9) involve averages of the stiffness coefficients, while some 
involve averages of the reciprocal of the coefficients. This is in contradiction to the sometimes-used 
approach of simply averaging over Young’s moduli. For comparison with the literature, recall from 
Eq. (1.1.1) that 6 2 / /xy x yS u y u xε= = ∂ ∂ + ∂ ∂ . The appearance of 1

11c− rather than its complex conjugate 
results from its arising from S33 = T33/c33 and that Eq. (2.2.6) involves conjugating only the stresses; 
this form correctly results in a positive contribution to the loss from this term. 

It is also worth noting that the term proportional to Im(c12/c11) has no corresponding term 
proportional to Re(c12/c11) in the energy density in Eq. (2.2.9), so it is easier to obtain the correct 
expression for the losses by using the direct expression Eq. (2.2.10) for the dissipated power rather 
than simply inserting complex stiffness coefficients into the energy density expression Eq. (2.2.9). 

3. Applications of the effective medium approach  

3.1. Thermal noise: Isotropic Layers 

We can use the result for the elastic energy density in Eq. (2.2.9) to compute the thermal noise in a 
coated mirror, as was done in Harry. We begin with the substrate fields for a Gaussian pressure 
field applied to the face of the mirror, with pressure field of the form (2F/πw2) exp(-r2/w2), from his 
Eqs. (A10): 

 

 

 

2 2 2 2

2 2

2 2

2 / 2 /
, 2 2

2 /
, 2

2 /
, 2

1 4
1

4 ( )

1
1

4 ( )

4

2

r w r w
rr s

s s

r w
s

s s

r w
zz s

F
S e e

r w

F
S e

r

F
T e

w



  

  



 





 
      

  


      

 (3.1.1) 

where λs and μs are the first Lamé constant and the shear modulus of the substrate, respectively.  

It is shown in Auld, Appendix 1, that in isotropic media the same form holds for the stiffness tensor 
for fields given in cylindrical coordinates as for Cartesian coordinates, with the identifications 

 1 , 2 , 3 , 4 , 5 , 6rr zz z rz rθθ θ θ→ → → → → →  (3.1.2) 

and the same identifications for the stresses. From his arguments, it appears that this connection 
also holds for cylindrical coordinates in hexagonal (or C∞) media, though of course not for the 
tetragonal symmetry media arising from layers of cubic materials.  



With Eq. (2.2.10) for the average power dissipated in the film, we have, with the thickness of the 
coating d, 
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With Eqs. (4.5.4) from the Appendix for the stiffness coefficients in terms of Young’s moduli and 
Poisson ratios, we have from Eq. (3.1.3) the dissipated power in terms of the bulk and shear loss 
angles 
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With Eqs. (4.2.1) for λ and μ, Eq. (3.1.4) becomes
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The thermal noise spectral density according to Levin is given by 
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where Wdiss = Pdiss/(2πf) is the power dissipated per cycle divided by 2π. Thus, with Eq. (3.1.5) for 
Pdiss, we have  
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In the limit of equal bulk and shear losses, the noise takes the simpler form 
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While not required for the thermal noise calculation, we can also evaluate the total energy in the 
film  by integrating Eq. (2.2.9)  
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where d is the thickness of the coating.  

Noting also that the xy (i.e. 6) shear vanishes in the substrate, and, using Eqs. (4.6.1) – (4.6.3) from 
the Appendix for the integrals in Eq. (3.1.9), we have the energy in the film as  
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In order to compare with Harry, we need to re-express the elastic constants in terms of Young’s 
moduli and Poisson ratio. Using Eqs. (4.1.1) and (4.2.1) to evaluate the coefficients in Eq. (3.1.10), 
we find  
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where the subscript s denotes a quantity evaluated in the substrate. This result for the elastic 
energy in the film agrees with that obtained from Harry Eqs. (A17) –(A19), in the limit when the 
composite layer is truly isotropic, i.e. when the averaging function is not required.  

3.1.1. Implications of the film energy expression for thermal noise: reciprocal weighting 

By considering the elastic moduli to be complex, various aspects of the aspects of the lossy behavior 
of the film, and hence the thermal noise, can be explored, e.g. allocating the loss to bulk vs shear 
contributions, tradeoffs between number of required layers and loss, etc. One quick point worth 



mentioning here, considering the simple case of a film made up of layers each with isotropic loss, so 
that the Poisson ratio can be considered real, and neglecting the different weighting of the two 
terms in Eq. (3.1.11) due to Poisson ratio factors, we see that the averaged loss angle in the first 
term vs that in the second term of Eq. (3.1.11) would involve 
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 (3.1.12) 

We see that even for the simplest case, the importance of the loss in the softer layer will be 
emphasized in one term in Eq. (3.1.11) for the energy while the loss in the stiffer layer will be 
emphasized in the other.  

3.1.2. Implications of the film energy expression: bulk and shear losses 

We see that there are comparable terms involving bulk and shear losses even in the limit of large 
spot size to film thickness as is assumed here. While a bulk compression would produce only bulk 
losses, a uniaxial stress as is imposed here will result in both bulk and shear losses. The relative 
importance of the two depends on the Poisson ratio and ratio of Young’s moduli in film and 
substrate, but in general neither is entirely dominant over the other.  

3.2. Thermal noise: Cubic layers 

For layers that are made of cubic materials like AlGaAs or AlGaP, there are three independent 
elastic constants, and we can’t make use of the usual description in terms of Young’s modulus or 
Lamé constants of the film. We can, however, use the effective medium result of Eq. (1.2.10) to 
describe the effective stiffness tensor, and the result in Eq. (2.2.7) for the dissipated power. If we 
continue to assume that the film is thin enough that Harry’s approach of taking the substrate fields 
to be the same as they would be in the absence of the mirror layers, then the computation remains 
relatively straightforward.  

The first step is expressing in Cartesian coordinates the required strain and stress tensor 
components given in cylindrical coordinates in Harry. In Harry, we are given 

, , , , , , , ,, , 0, , 0rr s s r s rz s r s zz s rz s r sS S S S S T T Tθθ θ θ θ= = = = = . The connection between strains in Cartesian and 
cylindrical coordinates at an angle θ to the x-axis is given by  
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where cos , sinc sθ θ≡ ≡ . With Eq. (3.2.1) we then conclude 
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For the given substrate strains, we have 
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We only need the stresses,  
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With Eqs. (3.2.3) and (3.2.4) for the substrate stresses and strains in the expression for the 
dissipated power density, Eq. (2.2.10), we have 
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Looking at the combinations of fields individually and expanding them using Eqs. (3.2.3) and (3.2.4)
yields: 
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With Eqs. (3.2.6) – (3.2.9) in Eq. (3.2.5) we have 
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Recalling that for isotropic layers, 44 11 12( ) / 2c c c= − , we see that as expected pdiss becomes 
independent of θ in that case. We can thus write Eq. (3.2.10) in a more suggestive form, using the 
trig identity sin 2sin cosθ θ θ2 = :  
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Comparing Eq. (3.2.11) with the first form of Eq. (3.1.3), we see that the result for integrating the 
dissipated power density over the volume of the films will be the same as for the case of isotropic 
layers, but with the addition of a term Paniso given by  
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where the second form follows from Eqs. (3.1.1) for the substrate fields, and the third form from 
evaluating the radial integral as 2/w2.  

Adding Eq. (3.2.12) for the “extra” term in the dissipated power for layers of cubic symmetry to the 
result in Eq. (3.1.3) for isotropic layers, we find 
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With Eq. (3.2.13) for the dissipated power in Eq. (3.1.6) for the thermal noise spectral density, we 
find 
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where again the correction term for cubic vs isotropic layers explicitly vanishes when the shear 
stiffness obeys the symmetry condition required for isotropy.   

3.3. Loss measurements with resonator Q’s 

3.3.1. Analysis with effective stiffness approach 

The same general considerations as were considered in computing the energy in the film for the 
thermal noise problem are applicable to compute the connection between modal Q’s and the losses 
in the multilayer. The difference between the film energy in this case and that in section 3.1, are 
that the surface of the resonator is in general stress free, so  that 3, 3 0sT T= = , but the in-plane 
shears will not necessarily vanish, i.e. 6, 6 0sS S= ≠ . In this case the energy density in the film from 
Eq. (2.2.9) takes the form 
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The dissipated power according to the third form of Eq. (2.2.10) with T3,s =0, is  
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The in-plane dilation and the asymmetric strain were defined after Eq. (2.2.10) as , 1, 2,D s s sS S S≡ +  
and , 1, 2,s sS S S∆ ≡ − , respectively. This energy density and dissipated power of course cannot be 
integrated over the strain fields until the fields of the mode in the substrate are known, presumably 
from FEA.  

For isotropic layers the second form of Eqs. (3.3.1) and (3.3.2) can be expressed in terms of Young’s 
modulus and Poisson ratio. Eq. (3.3.1) for the energy density in the film becomes with Eqs. (4.1.1) 
for the elastic constants.  
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where the second form follows by expanding SD and S∆ as described after Eq. (3.3.2). Eq. (3.3.2) for 
the dissipated power becomes with Eqs. (4.5.4) for the imaginary parts of the elastic constants in 
terms of the bulk and shear losses 

 ( )2 2 2
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σ σ ∆
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 (3.3.4) 

In this case, there are no coefficients involving averaging of inverse stiffness coefficients, unlike Eqs. 
(3.1.10) or (3.1.11), which can be traced back to the absence of any out-of-plane stresses in this 
case. We see by comparison with Eq. (3.1.9) that the combination of elastic losses obtained with Q-
measurements is not the same as that which enters into the calculation of thermal noise.  

3.3.2.  Analysis for isotropic layers via effective Young’s modulus and Poisson ratio  

We can also obtain the energy density via the effective Young’s modulus and Poisson ratio 
approach. We of course must ultimately get the same result as in Eq. (3.3.3) if the methods are both 
carried out correctly. The energy density is given by  

 1 1 2 2 6 6
1
2

u T S T S T S = + +   (3.3.5) 

With the stresses in terms of the strains via the constitutive relation in Eq. (1.3.2) we have 

 

2
1 2 1 2 1 2 62

2 2 2
1 2 1 2 62

1 1( ) ( )
2 1 2
1 12
2 1 2

Yu S S S S S S S

Y S S S S S

σσ σ
σ

σσ
σ

− = + + + + −  
− = + + + −  

 (3.3.6) 

Consider the coefficients individually. With the effective ,Y σ from Eqs. (1.3.8), we have  
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and hence with Y from Eq. (1.3.8) in Eq. (3.3.7) 
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 (3.3.8) 

We also have with Eqs. (1.3.8) 
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and  
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With Eqs. (3.3.8), (3.3.9), and (3.3.10) in Eq. (3.3.6) we have the energy density as 
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Comparing Eqs. (3.3.11) and (3.3.3), we see that the same result is obtained with the effective 
Young’s modulus and Poisson ratio as with the stiffness method.  

4. Appendix 
A variety of forms are used for the elastic constants of isotropic media. We collect some useful 
results here. 

4.1. Stiffness in terms of Young’s modulus and Poisson ratio 

The components of the stiffness tensor in terms of Young’s modulus and Poisson ratio are  
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−
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 (4.1.1) 

4.2. First Lamé constant and shear modulus in terms of Young’s modulus and Poisson ratio 

The first Lamé constant and shear modulus in terms of Young’s modulus and Poisson ratio are 
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 (4.2.1) 

4.3. Stiffness in terms of bulk and shear moduli 

The components of the stiffness tensor in terms of the bulk K and shear μ moduli are 
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4.4. Young’s modulus and Poisson ratio in terms of bulk and shear moduli 

The Young’s modulus and Poisson ratio in terms of the bulk and shear moduli are 
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The inverse is  
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These can be expanded into their real and imaginary parts to find the loss angle for the Young’s 
modulus and Poisson ratio in terms of those for the bulk Kφ and shear moduli µφ (which are perhaps 
the most physically meaningful loss quantities). It is easiest to obtain the result for σφ by taking the 
ratio of the two Eqs. (4.4.2) and then expanding. Yφ is then obtained straightforwardly. We find  
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Note that the loss angle for the Poisson ratio vanishes only if the bulk and shear losses are equal. 
These results are consistent with Hong et al, Phys. Rev. D, 87, 082001 (2013), Eqs. (53) and (54).  

4.5. Coefficients in mirror energy equation, Eq. (3.1.11) 

Two combinations of stiffness coefficients appear in the energy of the mirror layer in the thermal 
noise calculation in Eq. (3.1.3). These can be computed in terms of bulk and shear moduli using the 
relations in Eqs. (4.3.1) 
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Or, with Eqs. (4.1.1), in terms of the Young’s modulus and Poisson ratio: 
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Using the imaginary part of Young’s modulus and Poisson ratio in terms of bulk and shear loss 
angles from Eqs. (4.4.3), we have  
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In some cases it will be more convenient to have the total imaginary part of the coefficients, which 
we obtain from Eqs. (4.5.2) and (4.5.3) as  
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  (4.5.4) 

4.6. Evaluating the integrals in the thermal noise calculation  

Let us consider the integrals in Eq. (3.1.9) separately: 
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The integral of the product of , ,rr s sS Sθθ is tricky due to the logarithmic convergence. It is easier to 

evaluate as 2 2 2
, , , , , ,2 ( ) ( )rr s s rr s s rr s sS S S S S Sθθ θθ θθ= + − + . 
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where the second result in Eq. (4.6.2) follows from Eq. (4.6.1).  

The integral of the stress is  
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Finally, the integral of the combined stress and strain fields is  
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