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No scientific endeavor ever runs flawlessly. There are always malfunctions and interference that
cause the data to be less than perfect. In the case of gravitational wave data, one of the defects
often found in the signals are noise transients, called glitches. These glitches are often difficult
to model due to their non-Gaussian nature. It is not currently routine practice to remove them,
although sometimes glitch subtraction must be done when the glitch strongly interferes with the
signal. Each glitch is unique. The process of glitch subtraction is time consuming and has not yet
been tested and documented in a systematic way. We hope to add to the documentation on the
effects of glitch removal on parameter estimation by running parameter estimation on a data set of
simulated signals with glitches injected at varying distances from the signal. We will then remove
the glitch from the data and run parameter estimation on the clean waveform. This will allow us
to study how the distance between the glitch and the signal plays a role in the accuracy of the
parameter estimation. While we discovered that the presence of the glitch has a recognizable affect
on recovering the parameters, we have yet to draw conclusions on how the distance of the glitch
from the signal affects these results. We anticipate that there may be a distance at which the glitch
subtraction has negligible affect on estimating parameters.

I. INTRODUCTION TO GLITCH MITIGATION

The detection of gravitational waves, which requires
extremely high detector sensitivity, is made even more
difficult by high-amplitude, abrupt noise transients,
which we call “glitches”[1]. Glitches can be registered as
false-positives of gravitational wave signals from merg-
ing binary black holes (BBH) and binary neutron stars
(BNS), or the rarer case of a black hole-neutron star bi-
nary (BHNS). Both black holes and binary neutron stars
are the final stages in the lives of massive stars, although
it requires a higher mass to form a black hole. Figure
1 gives an example of the signal we hope to see during
binary coalescence, with no glitches present. In this spe-
cific case, the frequency of the signal gradually increases
from less than 50Hz to more than 100Hz over the course
of 30 seconds. The shape of this signal is what we com-
monly call a chirp. The signal track is clearly visible in
both the Hanford and Livingston data [2].

We currently do not know why these glitches occur,
although they are thought to be the result of environ-
mental disturbances or instrumental malfunctions. Mul-
tiple problems arise from the presence of glitches: the
detection of signals becomes less significant, and search
sensitivity is degraded [3]. Visually, we can see how the
glitch obscures a gravitational wave signal in figure 2.
This figure also shows how a model of the glitch com-
pares to the strain data [2]. In the top panel of figure
2 the glitch appears as a spike in frequency, with a nor-
malized amplitude of about 6, higher than the signal’s
normalized amplitude which appears to be about 4 or 5.
The model of the glitch, as seen in the bottom frame of
figure 2, is essential to this project. [4].

We believe removing glitches allows us to make more
accurate parameter estimation (PE), although whether
or not this assumption is true has not yet been system-
atically tested. The removal of glitches is not a trivial
problem. The simplest way to subtract the corrupted

data would be to “zero it out”, which can be done using
a “gate” that injects zeros in place of the unwanted data.
This method is not reliable, as it can cause leakage of
excess power to nearby data, proving to be more harmful
to the results than the initial glitch [3].

The method of masking and inpainting [3] proves to be
a better option for glitch removal, however it is not the
one we used in our study. This procedure is more com-
plicated than the prior and involves several more steps,
the math of which is too extensive for this report. An
example of the results of this method can be seen in fig-
ure 3. We chose to focus on glitch subtraction using the
BayesWave program that models the glitch’s wave func-
tion and removes the model from the original strain data.

The goal of this project was to subtract glitches in a
systematic way that allows us to draw conclusions on the
effect glitch subtraction has on PE. While we did not
have time to complete all our initial goals in the 10-week
duration of our project, we found interesting results that
have spurred continued research on the subject. Specif-
ically, this paper will address the impact of the glitch
on recovering signal parameters such as chirp mass and
mass ratio. As BayesWave glitch subtraction is a com-
putationally intense process that requires many hours to
produce an output, it would save valuable time to ignore
the glitch altogether. In our study, the glitch can only
be ignored, however, if its presence has negligible affect
on PE. In our results, we found drastically different pa-
rameter estimations with and without a glitch present,
although we are wary of the accuracy of our PE because
neither results align with our expectations.

II. METHODS FOR GENERATING A DATA
SET

To simplify the data set, one signal, paired with Gaus-
sian noise, and one glitch, was used. When building the
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data set we began with choosing a glitch. The chosen
glitch is from event S190413ac because this glitch has a
relatively high energy, and therefor we predicted it would
have a large negative impact on PE. We did not want to
conduct an experiment only to find the glitch we chose
was not loud enough to produce insightful results.

Next we generated Gaussian noise using the functions
pycbc.psd and pycbc.noise in python. Lastly, we cre-
ated a signal. The choice between using a real signal and
a simulated signal was an easy decision because only a
simulated signal allows the true parameters, such as in-
dividual masses, to be known and controlled. It was es-
sential that we be able to determine exactly how impact-
ful the presence of the glitch was on obtaining accurate
PE. The signal needed to be as long as the glitch in the
time domain so the signal was zero-padded (a process
which places a string of zeroes before the waveform to
add length). To do this we simply found the difference
in length (in the time domain) between the glitch and
the signal and added enough zeros to fill this difference
to the end of the signal waveform. The model IMRPhe-
nomD was chosen to generate the waveform due to its
signal tapering capability. This was essential, as moving
abruptly from zeros to the signal’s amplitude caused hori-
zontal, over-saturated lines to appear in the spectrogram
(q-scan). Masses of m1 = 20Msun, and m2 = 25Msun

were chosen because these are ”common” mass values.
Initially we chose identical masses of 10 solar masses,
however this value was too low to be considered a com-
mon mass and assigning both bodies identical masses was
unrealistic.

FIG. 1. This figure is adopted from [2] and shows three graphs
of the detection of a signal without any glitches present from
event GW170817 [2]. The LIGO-Livingston observatory de-
tected the signal most strongly. This is a good example of
glitch-free data.

III. APPROACH TO TESTING IMPACT OF
THE GLITCH

Before the proposed project could be carried out, some
time was spent learning how to operate BayesWave. Af-
ter successfully running a test job on BayesWave we were
ready to work with our own data set. We began by creat-
ing our ”control” data set, with which we could compare
our glitch-corrupted data. The control data consisted of
only Gaussian noise and the injected signal. We created
this data for both the Livingston and Hanford detectors,
finding that the signal appeared more strongly in the Liv-
ingston detector. We then ran parameter estimation on
this data set using the program Bilby.

Next we created a ”corrupted” data set by injecting
the glitch into the data for the Livingston detector. We
chose the Livingston detector over the Hanford detector
because the glitch was significantly louder than the sig-
nal in the Hanford detector. We feared the glitch would
completely overpower the Hanford signal and make it im-
possible for Bilby to detect the signal at all. We then ran
Bilby PE on the corrupted data.

Finally, we ran the corrupted data through BW to sub-
tract the glitch and create our ”cleaned” data set. We
intended to run PE on the cleaned data but we ran out of
time. We then wanted to compare PE from the cleaned
data to PE from both the control data and the corrupted
data to determine which it more closely resembled. This
would have allowed us to draw initial conclusions about
the effectiveness of BW glitch subtraction. If BW is not
as effective as we hope, it may be wise to abandon this
glitch subtraction method in favor of a more effective
method.

FIG. 2. The detection of the glitch in the LIGO data above
with the model of the glitch below for event GW170817 [2].
In the top image we see the glitch as a bright transient which
obscures a portion of the signal. Below we have the raw data
plotted in orange and the model of the glitch in blue. It is
this model that will then be subtracted from the strain data.
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FIG. 3. This image is adopted from [3]. It is an example of
masking and inpainting for kilonova (binary neutron star col-
lision) event GW170817 [3]. Upper panel shows the whitened
spectrogram of the raw data where a glitch is clearly visi-
ble. The middle panel shows the bad data gated away using
an inverse-Tukey window. The bottom panel shows the in-
painted result.

IV. RESULTS

A. Current Findings

The Bilby parameter estimation run produces posteri-
ors of various parameters. We decided to focus on two pa-
rameters that are extremely important to recover: mass
ratio and chirp mass. The mass ratio is simply the ratio
m1/m2. For this data set we should recover a chirp mass
of 20/25 = 0.8, however that is not what we found. For
the data set without the glitch injected Bilby produced
a flat posterior distribution with a median value of 0.732
as can be seen in figure 4. The expected distribution
shape is that of a Gaussian, with a clear peak, indicating
a clear “best” value was determined. With this distribu-
tion that was not the case, and the median value does
not give convincing evidence that the mass ratio was ac-
curately recovered, even without a glitch present. The
median chirp mass value for the frame with the glitch
present was even farther from the true value: 0.527. In
this case we can see the data is dramatically skewed to
the left. This posterior exhibits behavior that is known
as “railing against the prior.” The prior is a set of condi-
tions set before running Bilby. One of these pre-selected
values is a minimum mass ratio, which was set at 0.5 for
this data set. It is likely that the posterior would have
produced an even lower estimate for the mass ratio, had
a lower minimum limit been assigned.

The second parameter we investigated is chirp mass,

which is given by the equation:

Mchirp =
(m1 ∗m2)3/5

(m1 + m2)1/5

.
From this equation we calculated an actual chirp mass

of 19.44 Msun. Both of the posterior distributions for
chirp mass, however, revealed to be inconsistent with this
known value. As can be seen in figure 5, the posterior
for the glitch-free data is skewed dramatically to the left
and appears to be once again railing against the prior.
The real chirp mass sits at the far right of the graph
and does not overlap with the posterior at all. This is a
strong indication that something went wrong when run-
ning Bilby parameter estimation, although we do not yet
clearly know what the source of the problem is. In the
top panel of figure 5 we see the posterior of the data with
the glitch. The presence of the glitch clearly has a large
impact on the shape of the posterior distribution, result-
ing in two large peaks with little data anywhere else.

FIG. 4. Posterior plots for mass ratio parameter. The me-
dian of the posteriors is marked with an orange vertical line
and the value is displayed in the legend. The real mass ratio
value is marked with a red vertical line and the value is also
displayed in the legend. The top panel is the posterior for our
simulated data with an injected glitch. The bottom panel is
the posterior from the same data only without the injected
glitch.

B. Future Work

To continue this project we plan to conduct a more rig-
orous study of both the effectiveness of BayesWave glitch
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FIG. 5. Posterior plots for chirp mass parameter. The median
of the posteriors is marked with an orange vertical line and
the value is displayed in the legend. The real chirp mass
value is marked with a red vertical line and the value is also
displayed in the legend. The top panel is the posterior for our
simulated data with an injected glitch. The bottom panel is
the posterior from the same data only without the injected
glitch.

subtraction in general, and specifically of the effect of
glitch subtraction on parameter estimation. Before ex-
panding the study we will first locate the source of our
problems with Bilby which must be resolved before we
can move forward. Once we have successfully run Bilby
on the data presented in this report, we will expand to a
larger data set. When creating the new data we plan to
choose a new glitch, perhaps a blip glitch as these are one
of the most common glitches and pose potential problems
for BayesWave due to their close resemblance to signal
chirps. Currently, we plan to use the same simulated sig-
nal, although this may be altered if the signal is too weak
for Bilby to accurately determine the parameters. The
main question we will focus on answering is the one we
aimed to answer in this study: is there a cut-off distance
at which the glitch is far enough away from the signal

that its presence has no negative impact on recovering
accurate parameters?

We will make a data set of 20 different frames, with the
glitch at 20 different times in relation to the signal. In
answering this question, we also hope to gain a more com-
prehensive understanding of how well BayesWave glitch
removal successfully subtracts the glitch from the data.
Bilby PE will be run on all 20 frames and their posteriors
will be compared to a clean frame Bilby posterior, just
as was done in this study. BayesWave glitch subtraction
will then be run on any frames where the presence of the
glitch has a significant impact on PE. The BayesWave
cleaned frames can then be run through Bilby and their
posteriors can be compared with the original glitch-free
posterior and the glitch-present posterior to determine
which it more closely resembles.

With these results we hope to be able to draw mean-
ingful conclusions on how the proximity of the glitch
to the signal impacts a necessity for glitch subtraction.
BayesWave glitch subtraction is a computationally ex-
pensive, time consuming process which does not lend it-
self to the speedy results desired for quick data analysis.
If we can predetermine instances when glitch subtraction
is unnecessary we could save valuable time by leaving out
this step.
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