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Abstract

The “Hubble Tension” is a large, newfangled problem in astronomy which has even larger
cosmological consequences in its eventual resolve. Currently all calibration methods of the
constant rely on the use of the electromagnetic spectrum-a method that does not rely on
EM light but instead solely on gravitational radiation could prove extremely useful as both
a backup for the unreliability of multi-messenger astronomy at its current state and as a
new lens into cosmology which could potentially expand our understanding of light, gravity,
and the universe. To extract a cosmological redshift from a gravitational waveform, one
can look at both the point particle approximation phase contribution and the tidal phase
contribution to the total phase of a gravitational waveform which allows for a break in
the redshift degeneracy found in the mass parameters, which we can exploit to extract a
cosmological redshift and thus the Hubble constant. Our analysis incorporates both f-modes
and r-modes into the tidal phase contribution that are found in binary neutron star inspirals.
We use the Fisher Matrix Analysis to generate our relevant possible errors on each parameter
of the waveform.

1 Introduction

The Hubble-Lemaitre Constant H0 is an important quantity in cosmology because it char-
acterizes the rate at which the Universe is expanding, and it can be measured from a cosmo-
logical distance-redshift relation. However, two classical methods of measuring H0 have led
to seemingly inconsistent results, known as the “Hubble tension”. One method uses type Ia
supernovae (whose redshifts are provided by their spectra) as “standard candles” to infer the
(luminosity) distance [1], while the other method relies on the acoustic features in the Cosmic
Microwave Background (whose redshift corresponds to the surface of last scattering and is
well-calculated) as a “standard ruler” to measure the (angular-diameter) distance [2]. The
tension has triggered people’s interests in searching for alternative methods of constraining
H0, and it turns out that gravitational-wave (GW) observations is a promising candidate.

It has been well realized that a GW signal can serve as a “standard siren”, as one can easily
obtain the source’s luminosity distance from the signal’s amplitude. If one can also somehow
infer the source’s redshift, it will then allow for a measurement H0. One way to achieve so is
to identify the host galaxy with an EM counterpart, and this method has been successfully
demonstrated by the GW170817 event [3]. However, it may not be guaranteed that an EM
counterpart can always be found (e.g., the line of sight to the source may lie in the Galactic
plane). Thus a way of inferring the redshift using the GW signal alone would be of great
significance. One such possibility is to use the internal modes of a neutron star. Under certain
conditions the neutron stars cause tidal effects on each other which excite modes within the
neutron stars. The following technique was used by [4], except they only considered the
effects of the specific f and g modes, our analysis will focus primarily on the r-mode as well
as inertial modes in general within the neutron stars. We will choose to focus primarily
on the r-mode because it is now thought to have a considerably strong supplemental effect
on the merger for the possible detectable frequency range of future generation detectors.
For a given binary neutron star inspiraling gravitational wave data we are able to measure
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the r-mode resonance which allows us to find the redshifted spin frequency of the binary.
This spin frequency can be mapped to the spin parameter referred to as χ = S/M2, where
S ∼ fspinMR2 is referring to the spin angular momentum. The mass is redshifted by a factor
of (1 + z). This measured value of χ is really shifted by a factor of 1/(1 + z)2. With this
redshifted spin parameter we can compare it to the Point Particle Orbit which also gives us
a measurement of χ, this measurement of the spin parameter experiences no redshift. By
comparing the two measurements of χ we are able to deduce what the redshift value z would
be for a given binary. We will finally use the Fisher Matrix technique to determine how well
we can measure the cosmological redshift z.

2 Theory

In this section we will discuss the most important background theory to better understand
the methodology. As two neutron stars begin to inspiral gravitational waves are emitted that
traverse across spacetime to get to us. As those waves make their way to us the frequency
is undergoing a redshift in the form f → f/(1 + z) while the detectable phase shift of
the waveform remains unaffected. Since the phase is dependent on the frequency of the
waveform, there needs to be an inverse redshift effect to combat this. As discussed in [4] this
can be done with f-modes because the point particle phase contribution is a Post-Newtonian
effect which implies that the mass must undergo the transformation M → M(1 + z) to
preserve phase shift, but for the tidal phase shift contribution this does not occur since it is
a direct result of interior neutron star physics. This breaks a degeneracy between mass and
redshift which allows for a measurement of the redshift simultaneous to a measurement of
the luminosity distance if the equation of state of a neutron star is known.

We use a similar concept except for a couple key differences. Instead of f-modes we turn to
r-modes and other inertial modes because they are capable of achieving resonance within the
LIGO/VIRGO frequency band. These new inertial modes are a bi product of the effects of
spin and tidal forces on the interior of the neutron star. Now we look to the spin parameter
χ mentioned earlier to extract a redshift. We know from Binary Black Hole observations
that χ should remain unredshifted for the point particle phase contribution while χ does
become redshifted by χ→ χ/(1 + z)2 for the tidal phase contribution. χ is redshifted in this
way because χ ∼ Ω/M and we see that M → M(1 + z) as well as Ω → Ω/(1 + z) which
combines to yield the total redshift factor on χ above.

In this analysis we write in Geometric Units where [G = c = 1] for simplicity.

2.1 Gravitational Waveform

As discussed in [5], a waveform for gravitational waves is denoted as h(t) but we operate in
the frequency domain by performing a fourier transform

h̃(f) ≡
∫ ∞
−∞

e2πifth(t)dt (1)
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which yields a more useful version of the waveform

h̃(f) =
Q

DL

M5/6f−7/6 exp (iΦ(f)) (2)

for f ≥ 0. Where DL denotes the luminosity distance to the binary, M denotes the chirp
mass, and Q is the detector sensitivity which we take to be ∼ 1 for this project. The phase
consists of two major contributing factors: the point particle orbit approximation and the
tidal modes effects denoted as φpp(f) and φtidal(f). This waveform in total consists of 10
parameters (θ) = (DL,M, µ, tc, φc, ψ1, ψ2,Ω1,Ω2, z) Those parameters are labeled the Lu-
minosity Distance, Chirp Mass, Reduced Mass, Time of Coalescence, Phase of Coalescence,
Inclination Angles of each star, Spin Frequency of each star, and Redshift of the Binary.
The key here is to notice that we can measure a luminosity distance relatively easily from
the amplitude of the waveform, and using information from the phase shift we can measure
a redshift simultaneously.

2.2 Point Particle Phase Contribution

For our purposes we used the 1.5 order post-Newtonian point-particle frequency domain
phase from [5] which also includes the effects of spin

φpp(f) = 2πftc − φc −
π

4
+

3

4
(8πMf)−5/3

×
[
1 +

20

9

(
743

336
+

11µ

4M

)
x+ (4β − 16π)x3/2

] (3)

The quantity β is essentially the spin parameter discussed earlier. We also define x ≡
(πMf)2/3 and µ is the binary’s reduced mass. Beta can be defined as the following

β ≡M−2L̂ ·
[(

113

12
+

25

4

M2

M1

)
~S1 +

(
113

12
+

25

4

M1

M2

)
~S2

]
(4)

and since we know that L̂ · Ŝ = cosψ, we can rewrite beta in terms of our input parameters

β = M−2

[(
113

12
+

25

4

M2

M1

)
(I1 · Ω1 cosψ1)+(

113

12
+

25

4

M1

M2

)
(I2 · Ω2 cosψ2)

(5)

Note that I is simply the moment of inertia, which can be calculated analytically as a function
of mass for a polytropic model of k = 1.

2.3 Tidal Phase Contribution

For this project we focus on the 4 inertial modes discussed in [6]. In this paper the neutron
star equation of state is approximated by a k = 1 polytropic model, the density is described
by the following

ρ = C

[
sin (πr/R)

(πr/R)

]k
(6)
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This approximation allows us to use the results from Poisson for the orbital phase shift
due to dynamical tidal resonance with the gravitomagnetic potential. Using the polytropic
model captures the assumption made my most EOS models that radius and mass are nearly
independent of eachother. As long as we assume a known EOS it will not introduce any
further uncertainties to our problem.

(∆Φ)mn =
25π2

2304

(pmn )2

N̂m
n

(m− wmn )2

|wmn |4/3
(am± )2 R4Ω2/3

(M1)2(M2)(M)1/3
(7)

Where N̂m
n , p

m
n , w

m
n are all constants defined in Table II of [6] for k = 1. am± is one of the

various dependencies on the parameter ψ (inclination angle)

a2
± = ∓ sinψ(cosψ ± 1)

a1
± = ±(cosψ ± 1)(2 cosψ ∓ 1)

a1
± = ∓ sinψ cosψ

(8)

According to Poisson, ”inertial modes of a rotating star are labelled by two integers: the first
is m, which determines the eimφ dependence of the velocity perturbation on the azimuthal
angle φ [and] the second integer is n, which sequences the infinity of overtones for each value
of m. Each inertial mode comes with a distinct eigenfrequency ωmn = wmn Ω, where Ω is the
star’s rotational angular velocity, and wmn is a number of order unity”

Whether or not we choose am+ or am− depends on which mode is resonantly excited. This
is determined by the tidal driving which should be decomposed into two terms oscillating
at: +imΩorbt and −imΩorbt. We observe that of the 4 distinct modes we examine in our
work, the modes corresponding to (m = 2, n = •), (m = 1, n = I), (m = 0, n = I)
all have positive eigenfrequencies and they are resonantly excited by the eiΦ term in the
equation below implying that am+ should be used for those modes. For the fourth distinct
mode corresponding to (m = 1, n = II) we find that it has a negative eigenfrequency and
thus is excited by the e−iΦ term in the equation below which implies that am− should be used
instead. For the tidal driving expression from [6] we have:

S =
∑
m≥0

∑
n

Smn (9)

Smn ∝ [am+ Re(ieiΦ) + am−Re(ie−iΦ)] (10)

This accounts for four separate inertial modes acting on each star. These trigonometric
dependencies that each mode has on the star’s inclination angle allows us to be able to
break a degeneracy between the inclination angle and redshift. This was a problem we were
facing with only incorporating a single r-mode contribution as discussed in [7]. Below is a
superposition of all inertial modes and their contribution to a total ∆φtidal. Each vertical
green line is a resonance being achieved by the first neutron star and each vertical blue line
is a resonance being achieved by the second neutron star, there are 8 total because each star
has 4 distinct resonances being achieved by the 4 inertial modes.
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Figure 1: Inertial Mode Resonances at distinct resonant frequencies

2.4 Total Phase Contribution

Once we have successfully calculated the phase shifts for each of the 4 modes for both neutron
stars we can use Eq. (32) of [8] to combine all the phase contributions:

Φtotal(f) = Φpp(f)− 2
∑
k

(
1− f

fk

)
δφkΘ(f − fk) (11)

Where we sum over all the modes for both stars, δφk is the phase shift due to the tidal
resonance, fk is the eigenfrequency corresponding to the kth mode and can be rewritten as
fk = |wmn |Ω/π, and Θ(f − fk) is the Heaviside step function. In doing this we are able to
construct the total phase shift of the gravitational waveform.Lastly, we need to cut off the
waveform at 2fisco because the waveform is invalid for frequencies above this. So in total we
end up with:

h̃(f) =
Q

DL

M5/6f−7/6 exp (iΦtotal(f))Θ(2fisco − f) (12)

3 Method

3.1 Fisher Matrix Technique

In order to extract information about the relevant errors on a gravitational waveform’s
parameters, we need to utilize the Fisher Matrix Technique discussed in [5] where the Fisher
Information Matrix is defined as

Γij ≡
(
∂h

∂θi

∣∣∣ ∂h
∂θj

)
(13)

The Fisher Information Matrix is constructed from an inner product between each partial
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derivative with respect to a given parameter. This inner product is defined as

(h1|h2) = 2

∫ ∞
0

h̃∗1(f)h̃2(f) + h̃1(f)h̃∗2(f)

Sn(f)
df (14)

Which we can then invert to get Σ ≡ Γ−1 so we can extract the root-mean-square error in a
given parameter θi

√
((∆θi)2) =

√
Σii (15)

Once the error has been extracted we can know just how precisely each of the given param-
eters can be measured. By inverting the fisher matrix, we are creating a new covariance
matrix to predict the covariances one will achieve after conducting an experiment. One can
think of the diagonals of the information matrix as containing information about the possible
precision on the error for each parameter, while the remaining entries contain information
which explains how the errors for each parameter are related to each other.

3.2 Parameter Space Investigation

In order to ensure that our results were not tampered by numerical instabilities in the
construction of the Fisher Information Matrix, we plotted the error of each parameter as a
function of their step size used for numerical differentiation. We would then choose our step
size for each numerical derivative based on the stable regions within these graphs. Below is
an example of what this looked like.

10-11 10-9 10-7 10-5 10-3

step size in ∂h̃(f)∂φc

0.0075

0.0080

0.0085

0.0090

Er
ro

r i
n 
∆
φ
c

Figure 2: Error of φc with respect to step size

To choose a step size in a non stable region would create great problems in our predictions.
Each graph looks different considering each parameter has a different role in the waveform,
which means we can’t simply pick one step size to work with for all parameters.

In order to examine degeneracies between parameters we constructed probability contours
from the fisher information matrix. Below is probability contours between the error in
redshift and one of the inclination angles before and after we incorporated several inertial

page 6



LIGO-T070236-00-D

modes. This shows an improvement in the degeneracy between the redshift and inclination
angle from including the 4 inertial modes discussed in [6] as opposed to a single r-mode
discussed in [7]
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Figure 3: Error of z with respect to the error in ψ1 using a single r-mode
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Figure 4: Error of z with respect to the error in ψ1 using several inertial modes

4 Results

The relevant error we are concerned about in this analysis is with respect to a cosmological
redshift z because inevitably it is what we need to properly calibrate the Hubble Constant.
What we found in using a Cosmic Explorer Sensitivity Profile [9] was that for a realistic and
probable set of parameters we can get a relative order ∆z/z ∼ 4 which is undesirable, but
if we keep those inclination angles the same but increase the spin frequencies of the neutron
stars to idealistic values we can cut that in half. We also found that if we use a realistic set
of spin frequencies but utilize inclination angles that are idealistic we get a similar effect and
can achieve ∆z/z ∼ 2 for low redshifts. If we use an optimistic set of parameters we can get
a relative error less than order unity which can be beneficial.
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Figure 5: Relative Error of z with respect to z for most probable and realistic inclination
angles.
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Figure 6: Relative Error of z with respect to z for most idealistic inclination angles

5 Conclusion

Using tidal effects in BNS mergers is crucial in our ability to measure redshifts simultaneously
with luminosity distance for such events. While our analysis involving solely inertial modes
discussed in [6] was not as precise as [4] and their use of f-modes, it is still valuable to have
investigated this approach because we were able to successfully extract information about
a redshift by exploiting the degeneracy between the spin parameter and the redshift in
the point particle orbit approximation phase contribution and the tidal phase contribution.
Looking forward to possible extensions of this research, it would be valuable to examine how
well we could constrain the redshift of a binary where we combine both the effects of the
inertial modes and the f-mode. Together we would likely be able to measure the redshift
more precisely than [4] proposed. Furthermore, we would like to investigate how much more
relaxed our assumptions can become about the equation of state of the neutron star.
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X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fan-
taye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis,
A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-
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