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Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have observed
gravitational wave (GW) signals from compact binary coalescences. Continuous waves (CW) and
long-transient waves have not yet been detected in the LIGO-Virgo observing runs despite us know-
ing of their existence from theory. One of the issues with the LIGO data that plays a role and makes
it challenging to detect these narrow-band waves is the instrumental spectral lines which obscure
any astrophysical signals at the frequencies where they occur. This project explores an adaptive
filter, named “iWave”, as an alternative method of tracking these instrumental lines so they can be
better factored out of the data as well as exploring the sensitivity of directly tracking weak CW or
long-transient signals using iWave.

I. INTRODUCTION

On September 14th 2015, Advanced Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) detected its
first gravitational wave (GW) event, GW150914 [3]. This
event was detected in the first observing run (O1) of Ad-
vanced LIGO (from September 12th, 2015 to January
19th, 2016). After O1 concluded, the second observing
run (O2) began on November 30th, 2016 and ended on
August 25th, 2017 [5]. During the O2 run the binary neu-
tron star (BNS) merger event, GW170817, was detected
[4]. The third observing run (O3) had three confirmed
mergers – GW190412 [6], GW190425 [7], and GW190814
[8]. Throughout the entire O1–O3 runs, there have been
14 confirmed GW events, most of them binary black hole
(BBH) mergers.

The raw data from the LIGO detectors contain noise
and glitches, so one of the most important aspects of
LIGO data analysis is detector characterization and noise
modeling. Without being able to monitor the detec-
tor or track the noise accurately, the significance of an
event could be incorrectly estimated. A significant part
of LIGO noise is instrumental lines, which can obscure
astrophysical signals at the frequencies where they oc-
cur. They cannot be factored out easily and some are
not very well understood. Some may even have wander-
ing frequencies and/or varying amplitudes, which makes
them even more difficult to track [2].

Adaptive filtering is a dynamic approach for character-
izing the features in input data, including noise lines or
signals with wandering frequencies and amplitudes. This
method is very helpful when the input signal changes over
a period of time. It could prove help in analyzing the de-
tector interferometric data, tracking the varying instru-
mental lines over the run. A phase locked loop (PLL)
is a control system that uses an oscillator to produce
an output signal at a frequency and phase synchronized
with the input signal. iWave is a hybrid method of a

traditional PLL and an adaptive filter that is used for
line tracking. This allows us to combine the wandering
frequency/amplitude aspects of adaptive filters with the
oscillation frequencies of PLLs to help us better track
these spectral lines over a period of time.

There are other types of GWs in addition to those from
compact binary coalescences (CBCs). Continuous waves
(CWs) are produced by a single spinning neutron star.
There are also long-transient GW signals that can be
produced by a post-merger remnant from a BNS merger.
Burst GWs are not yet very well understood since they
are difficult to model. Once detected, however, they will
be able to reveal a significant amount of astrophysical
information. Stochastic background GWs from the early
evolution of the universe are another type of weak sig-
nals remaining to be detected [1]. Existing techniques,
e.g., the hidden Markov model tracking, can also track
wandering signals and has been used for tracking both in-
strumental lines as well as CW and long-transient GWs
[9, 12, 13]). Such methods mainly work in the frequency
domain while iWave could prove to be an alternative
method for analyzing the data in time domain.

In this project, we aim at using iWave to successfully
track instrumental lines, investigate if iWave can subtract
the noise lines and hence clean the data, and if iWave can
identify weak synthetic GW signals in the data.

II. PROPOSAL OBJECTIVES

In the initial proposal, three main stages are laid out in
the Approach section. The first stage is to test if iWave
works with the publicly available GW data by: running
iWave with the data containing some confirmed instru-
mental lines, comparing the cleaned and uncleaned spec-
trograms of the data, and analyzing the output of iWave.
The second stage is to use iWave to identify some not-
well-understood lines in the data and study certain lines
appearing over different time periods by: studying these
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unknown noise artifacts and quantifying how well iWave
can clean the data as well as comparing our results to
other studies. The third stage is to test if iWave is sensi-
tive to weak synthetic CW or long-transient GW signals
by: checking the root-mean-square (rms) error between
the injected and recovered signals and quantifying the
strain sensitivity.

III. PROGRESS

Throughout the first 3 weeks, progress has been made
on all the objectives mentioned in Section II as well as
finishing the Weeks 1–2 benchmark that was under the
Schedule section in the original proposal which consists
of: setting up an environment on the cluster, reading
literature in more detail, and running sample tests with
iWave.

A. First Stage

I ran tests in the iWave directory and then rewrote
the static and multi-line tracking tests to get a better
understanding of both. Figure 1 is the plot output of
the rewritten static test. The red sine wave is the input
signal. The blue wave is the qout, which is the output of
iWave phase shifted by π/2 to be the quadrature phase.

The green line represents Aout =
√
d2out + q2out where dout

is the direct output of iWave and Aout is the amplitude of
the output which exponentially increases until it reaches
the input signal’s amplitude. The black curve is the input
signal subtracted by dout, i.e., the error signal.

FIG. 1. iWave Static Test. The red sine wave is the input
signal with a frequency of 5 and amplitude of 1. The blue
wave is the qout signal. The green line is the amplitude of the
output. The black wave is the error signal, which becomes
less than 0.01 at about 4.62 seconds.

As for the multi-line tracker, I added in a third fre-
quency to see how well iWave would track three lines. I
experimented with the two input parameters to see the

FIG. 2. iWave Multi-Line Test with Default fguess and τ
Values. In this, iWave fguess values are set to the exact fre-
quencies of each line (30 Hz, 32 Hz, and 35 Hz) and τ = 1.
The top left graph is iWave’s output. The top right graph
is iWave’s error signal when it comes to tracking the 3 lines.
The bottom left graph is the frequency throughout the out-
put time series. The bottom right graph is the amplitude of
the output data. As seen by the frequency and error graphs,
iWave locks onto all three signals.

effect on iWave’s ability to track: (1) the initial guess
of the signal frequency fguess, and (2) the characteristic
timescale of the signal τ . As a starting point, Figure 2
sees a clear lock on because the fguess values which iWave
starts its search at are 35 Hz, 32 Hz, and 30 Hz which are
the same as the frequencies injected that iWave should
be tracking. However, when increasing or decreasing the
fguess value for all the lines, iWave seems to begin track-
ing the closest line even if it is a duplicate as shown in
Figure 3 and Figure 4. All these results prove that iWave
can lock onto multiple signals. However, the changing
fguess results prove that we can put multiple fguess val-
ues into iWave and have it lock onto the same line. If two
spectral lines are close in frequency, iWave might not be
able to track both unless the fguess values are far enough
apart so iWave may track both. After this, I tried ex-
perimenting with iWave using 30 Hz, 50 Hz, and 75 Hz
frequencies for lines. I tried fguess values that were 10–25
Hz away from the real frequencies and still saw a lock
on from iWave. In Figure 5, the fguess values are 10 Hz,
60 Hz, and 100 Hz while the lines are at the 30 Hz, 50
Hz, and 75 Hz. What this shows is that, without noise,
iWave is able to lock onto a signal even when the fguess
given to it is 10–25 Hz away from the actual frequency.
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FIG. 3. iWave Multi-Line Test with fguess Values Increased
by 2 Hz and τ=1. The fguess values are 32 Hz, 34 Hz, and
37 Hz, which is 2 Hz more than the actual frequencies of 30
Hz, 32 Hz, and 35 Hz. As seen in the bottom left frequency
estimate plot, iWave only locks onto the 32 Hz and 35 Hz
signals since those are the closest lines to the fguess values
despite this meaning that the 35 Hz line is tracked twice.

FIG. 4. iWave Multi-Line Test with fguess Values Decreased
by 2 Hz and τ=1. The fguess values are 28 Hz, 30 Hz, and
33 Hz which is 2 Hz less than the actual frequencies of 30
Hz, 32 Hz, and 35 Hz. As seen in the bottom left frequency
estimate plot, iWave only locks onto the 30 Hz and 32 Hz
signals since those are the closest lines to the fguess values
despite this meaning that the 30 Hz line is tracked twice.

FIG. 5. iWave Multi-Line Test Using Inputs of 30 Hz, 50 Hz,
and 75 Hz. This is iWave tracking 3 lines at 30 Hz, 50 Hz,
and 75 Hz with fguess values at 10 Hz, 60 Hz, and 100 Hz
respectfully. As seen by the frequency estimates, iWave locks
onto all three lines despite the Hertz difference between the
actual frequencies and fguess values.

B. Second Stage

One thing that is currently being worked on is seeing
how well iWave can clean the data. Timesh Mistry of
the iWave group developed a matlab script that uses the
matlab version of iWave to track four lines in interfer-
ometric data. Figure 6 shows the Livingston raw data
pre-filtering on the left as well as the raw data from 1000
Hz to 1020 Hz since that is the area we are focusing
on. Figure 7 contains plots displaying the parameters
of the pre-iWave filter on the left side and the data af-
ter using those filters. The filtered data allows iWave to
track the lines without as much of an error signal as well
as limits iWave to focusing on the 1000 Hz to 1020 Hz
frequency band (which can be clearly seen in Figure 8
where the filtered data is plotted in red on top of the raw
data). Lastly, the iWave output can be clearly seen in
Figure 9. The frequency estimates for the lines do not
change much, however the amplitude estimates and error
signals do see much variance throughout the time series
[11].

Currently, I am working on replicating these results
using a python jupyter notebook and the python version
of iWave to see if there are any differences between the
two iWave versions.

C. Third Stage

I ran some tests with an injected long-transient GW
signal in Gaussian noise to see what iWave would do.
Changing the τ and fguess values effected iWave’s ability
to track the signal in the noise. The default τ and fguess
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FIG. 6. Livingston Raw Data. This 1st graph is of the raw data spanning the whole frequency series. However the 2nd graph
is only of the 1000 Hz to 1020 Hz frequency band. This is because the 1000 Hz to 1020 Hz frequency band is what we are
focusing on for iWave to search for lines [11].

FIG. 7. Filter Bode Plot and Filtered Data. The left two plots are the bode plots for the filter. This shows the frequency and
phase responses of the filters placed on the raw data. Changing parts of the filter will lead to different filtered data results and
might lead to less accurate iWave results. The right two plots are the filtered data. The top is the filtered data over the whole
frequency series while the bottom is the filtered data over the 1000 Hz to 1020 Hz frequency band [11].

values are 1 and 1000 Hz respectfully, and the output iWave produces can be seen in Figure 10. Calculating
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FIG. 8. Comparing the Filtered Data to the Raw Data. This clearly shows how the filtered data takes out all the unnecessary
frequencies for our analysis. All the frequencies we do not need are filtered out and, using this filtered data, we can just focus
on the 1000 Hz to 1020 Hz frequency band that we want [11].

FIG. 9. iWave Output. Throughout the time series, the iWave trackers stay relatively constant in terms of the frequency
estimates as seen in the top graph. The amplitude estimates for the trackers (seen in the middle graph) seem to get more
constant as the time domain increases. The error signal throughout the entire time series seems larger than ideal, however no
rms has been calculated for this test [11].

the rms for this signal once iWave locks on around the 200 second mark, we get 2097.6663629315462, which is
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FIG. 10. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1 and fguess = 1000 Hz. This is the baseline for
all the τ and fguess changes for exploring more about iWave’s
abilities when it comes to this injected signal in this Gaus-
sian noise. The top left graph is the amplitude of the iWave
output. The top right graph is the error signal over the time
series. The bottom left graph is the frequency estimate of
iWave. The bottom right graph is the output of iWave. As
seen by the error and frequency graphs, iWave is able to
generally lock onto the signal between the 100 and 200 sec-
ond marks. The calculated rms from 200 to 600 seconds is
2097.6663629315462.

FIG. 11. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1.5 and fguess = 1000 Hz. As seen by the error and
frequency graphs, iWave tracks the wandering line in the test
frame GW data and can lock on between the 100 and 200
second marks. The calculated rms from 200 to 600 seconds is
1816.1134661860237, which is less than the rms when τ = 1.

relatively high for what the error plot suggests.

Changing the τ value by the same order of magnitude
did not make much of a difference in iWave being able
to lock on as seen in Figure 11 where the fguess value is
the same 1000 Hz but τ is 1.5. Using these values, the
calculated rms is surprisingly less than when tau was 1.

Increasing the fguess value by 5Hz to be 1005 Hz
lead to the outputs seen in Figure 12 (where τ is 1)
and Figure 13 (where τ is 1.5). Neither of these pa-

FIG. 12. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1 and fguess = 1005 Hz. As seen by the error and
frequency graphs, iWave is unable to lock onto the signal when
the fguess is 1005 Hz and τ is 1. This is because the fguess
value is too far away from the signal for iWave to see and lock
onto it.

FIG. 13. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1.5 and fguess = 1005 Hz. As seen by the error and
frequency graphs, iWave is unable to lock onto the signal when
the fguess is 1005 Hz and τ is 1.5. This is because the fguess
value is too far away from the signal for iWave to see and lock
onto it.

rameters allowed iWave to be able to lock onto the signal.

Changing the fguess value to be 5 Hz smaller than the
default 1000 Hz allows iWave to able to lock onto the
signal as seen in Figure 14 (where τ is 1 and fguess is 995
Hz) and Figure 15 (where τ is 1.5 and fguess is 995 Hz).
However, this may be because the line iWave is tracking
crosses through the 995 Hz fguess frequency value chosen.

In order to make sure the reason they locked on was not
because the line iWave is tracking crosses through the 995
Hz fguess frequency value chosen, Figure 16 and Figure 17
use an fguess value of 990. In these examples, the τ value
matters since when τ = 1.5 (while more accurate when
the fguess is 1000 Hz or 995 Hz) iWave is unable to lock
onto the signal when the fguess is 990Hz. This proves
that we will need to try multiple combinations of τ and
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FIG. 14. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1 and fguess = 995 Hz. As seen by the error
and frequency graphs, iWave is able to lock onto the sig-
nal between 200 and 300 seconds when the fguess is 995 Hz
and τ is 1. The calculated rms from 300 to 600 seconds is
1882.9930918236535.

FIG. 15. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1.5 and fguess = 995 Hz. As seen by the error
and frequency graphs, iWave is able to lock onto the sig-
nal between 200 and 300 seconds when the fguess is 995 Hz
and τ is 1.5. The calculated rms from 300 to 600 seconds is
1630.6827184273648.

fguess values to make sure we are using the best value
setup for the data.

Another part where some progress has been made is on
plotting the GW data on a spectrogram so we can better
view iWave’s impact on the spectral lines. While iWave
has not been used to clean Figure 18 and the spectro-
gram is of the publicly available GW data for that event,
having this initial spectrogram to compare results to is
helpful.

I have also checked the rms error on injected and re-
covered signals in terms of the static/multi-line tracking
tests that were testing iWave’s ability to track lines with-
out any background noise. The rms error is something
that needs to be further studied.

FIG. 16. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1 and fguess = 990 Hz. As seen by the error
and frequency graphs, iWave is able to lock onto the sig-
nal between 200 and 300 seconds when the fguess is 990 Hz
and τ is 1. The calculated rms from 300 to 600 seconds is
1882.9930569463222.

FIG. 17. iWave Outputs for Injected signal in Gaussian Noise
when τ = 1.5 and fguess = 990 Hz. As seen by the error and
frequency graphs, iWave is unable to lock onto the signal when
the fguess is 990 Hz and τ is 1.5. This shows that while an
fguess value can work for a certain τ value, having iWave lock
onto a signal is about finding the right balance between the
fguess and τ .

IV. CHALLENGES

Most of the challenges encountered in this project so
far stem from inexperience using gwpy. Therefore, a large
amount of time was devoted to the gwosc/gwpy/PyCBC
tutorials in the GW Open Data Workshop [10]. I also
made a jupyter notebook where I experimented with dif-
ferent gwpy.TimeSeries commands to see which ones will
be useful and get a better grasp over it. The spectrogam
and bandpass filter commands seem particularly useful
in terms of seeing iWave’s impact as well as limiting the
frequencies iWave is looking at to improve accuracy.

Another setback that I have faced while running these
scripts is the Kernel’s constant restarting and inability
to finish all of the jupyter notebook. One solution that
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FIG. 18. Spectrogram of GW170104. In this spectrogram of GW event GW170104, there is a clear line around 300 Hz. This
line does not show up in the publicly available list of spectral lines and other noise sources. Characterizing these unknown/lesser
known lines will help us better understand these spectral lines.

I have not looked into fully is using jupyter2.ligo.
caltech.edu to run the python notebooks. One way
that I have currently been getting around this setback
is putting my code into .py files and running them from
the command line. This solution is better than waiting
for the notebooks to load because of the large amounts
of computation that might be necessary for any given
script.

Lastly, one challenge that we had to deal with near
the beginning and is something we need to look more
into is the differences between the python and matlab
versions of iWave. In the beginning, the new version of
iWave (iwave 3.1) did not contain a file that was needed
for its python installation. This has since been patched
and we were able to get around this setback by copying
the file from Ling’s version from when she first installed
iWave. However, currently Mistry is working with iWave
on matlab which has slightly different commands than
the python version. Matlab iWave is more developed so
it will be interesting to monitor any changes between our
results and his.

V. NEXT STEPS

I would like to finish the python version of Mistry’s
matlab script and quantify the rms from iWave’s output
as soon as possible before the iWave meeting on Friday
July 10th. If there are any discrepancies with iWave’s
performance, they can be brought up and discussed at
the meeting. This script, once finished, can also be a
launching point in terms of tracking not well-known lines
and multiple lines at the same time to clean up the data
to satisfy the Stage 2 main objective.

As seen in Figure 18, I made a spectrogram of
GW170104. I would like to use the GW170104 data to
see if iWave can clean the line seen around 300 Hz. Once
this is complete, I would like to develop spectrograms for
other GW events and see how well iWave can filter out
some of the lines on those spectrograms.

Lastly, I would like to explore producing signal data
and seeing how well iWave can detect injected signals
within Gaussian noise.
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