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Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have observed
transient gravitational wave (GW) signals from compact binary coalescences. Yet undetected GWs
from other types of sources, including quasimonochromatic continuous waves (CW) from individual
spinning neutron stars and long-transient signals from newly born neutron stars, are of interest.
We explore the capability of an adaptive filter, named “iWave”, to track and detect weak CW or
long-transient GW signals and quantify the sensitivity. This new tracking method, operating on
time-series data, provides an efficient alternative to existing frequency-domain matched filter search

methods.
remnants.

We demonstrate that it can be used in follow-ups of binary neutron star postmerger
Further, we discuss the application of iWave to tracking and removing narrow-band

instrumental spectral lines from the interferometric data, which could obscure astrophysical signals

at the frequencies where they occur.

I. INTRODUCTION

On September 14th, 2015, Advanced Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) detected
its first gravitational wave (GW) event, GW150914 [1].
This event was detected in the first observing run (O1)
of Advanced LIGO (from September 12th, 2015 to Jan-
uary 19th, 2016). After O1 concluded, the second
observing run (O2) began on November 30th, 2016
and ended on August 25th, 2017 [2]. During the
02 run, the binary neutron star (BNS) merger event,
GW170817, was detected [3]. In the third observing
run (O3), an increased number of merger candidates
were identified [? ], including events of particular inter-
est: GW190412 [4], GW190425 [5], GW190521 [6], and
GW190814 [7]. Throughout the entire O1-03 runs, all
of the GW events are from compact binary coalescences
(CBCs), most of which are binary black hole (BBH)
mergers.

There are other types of GWs in addition to those
from CBCs. Continuous waves (CWs) are produced by
individual spinning neutron stars. There are also long-
transient GW signals that can be produced by a post-
merger remnant from a BNS merger. Burst GWs are
not yet very well understood since they are difficult to
model. Once detected, however, they will be able to re-
veal a significant amount of astrophysical information.
Stochastic background GWs from the early evolution of
the universe are another type of weak signals remaining
to be detected [8].

The raw data from the LIGO detectors contain noise
and glitches, so one of the most important aspects of
LIGO data analysis is detector characterization and noise
modeling. Without being able to monitor the detec-
tor or track the noise accurately, the significance of an

event could be incorrectly estimated. A significant part
of LIGO noise is instrumental lines, which can obscure
astrophysical signals at the frequencies where they oc-
cur. They cannot be factored out easily and some are
not very well understood. Some may even have wander-
ing frequencies and/or varying amplitudes, which makes
them even more difficult to track [9].

Adaptive filtering is a dynamic approach for character-
izing the features in input data, including noise lines or
signals with wandering frequencies and amplitudes. This
method is very helpful when the input signal changes
over a period of time. It could prove helpful in analyzing
the detector interferometric data, tracking the varying in-
strumental lines over the run. A phase locked loop (PLL)
is a control system that uses an oscillator to produce an
output signal at a frequency and phase synchronized with
the input signal. “i{Wave” is a hybrid method of a tra-
ditional PLL and an adaptive filter that is used for sig-
nal tracking. This allows us to combine the wandering
frequency/amplitude aspects of adaptive filters with the
oscillation frequencies of PLLs to help us better track sig-
nals over a period of time. Existing techniques, e.g., the
hidden Markov model tracking, can also track wandering
signals and has been used for tracking both instrumen-
tal lines as well as CW and long-transient GWs [10-12].
Such methods mainly work in the frequency domain while
iWave could prove to be an alternative method for ana-
lyzing the data in the time domain.

In this paper, we present how iWave tracks long-
transient GW signals. In Section II, we explain the iWave
method in more detail and show testing examples. Sec-
tion IIT describes the long-transient GW signal model
and the capability of iWave to recover synthetic signals
injected in Gaussian noise. In Section IV, we briefly dis-
cuss another application of iWave: tracking and removing



spectral noise lines in interferometric data. Finally, we
conclude in Section V.

II. TWAVE
A. Algorithm

A traditional PLL is a loop containing a voltage-
controlled oscillator (VCO), a loop filter (LF), and a
phase detector (PD). The VCO is an oscillator set to
a frequency w which controls the signal. The VCO input
is set by the output of the PD since the PD determines
the phase difference between the oscillating input and
the VCO output. The LF controls the bandwidth of the
PLL. However, there are two relevant limitations when
using PLLs — (1) the input signal amplitude, and (2)
an oscillating component introduced by the PD. Tradi-
tional PLLs do not determine the input amplitude and
the output of the PLL is not related to the amplitude
of the input. This amplitude information is crucial for
GW signal tracking and noise subtraction. The second
flaw with using only a traditional PLL is that the PD
introduces an oscillating component at 2w. This needs
to be filtered out before being fed into the VCO, because
otherwise there will be sidebands in the output. Through
filtering it out, a phase shift could occur and cause more
issues with the output.

iWave is a PLL in which the reference oscillator is re-
placed by an adaptive filter, making it a hybrid of a tradi-
tional PLL and an adaptive filter. It utilizes a resonant
orthogonal system generator to produce two oscillating
outputs — dous being in-phase with the input and goug
being 90 degrees out of phase (the quadrature phase).
The bandwidth of iWave is set using a single response
time parameter so the phases will automatically line up.
iWave is a technique for dynamically characterizing oscil-
lations whose amplitudes and frequencies may vary. Un-
like traditional PLLs, it can calculate the amplitude of
the input signal using its two outputs through the equa-
tion [13]

Aout = \/ dgut + qcz)ut' (1)

iWave is meant to characterize the oscillating input
through the output y,. The iteration equation for the
output of iWave is given by [13]

Yn = e_weiAynfl + (1 - e_w)xnz (2)

Where 1/w is the number of samples corresponding to
one e-folding in the relative weight of previous samples,
A is the frequency in radians per sample, y,_1 is the
previous output, and x,, is the input.
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FIG. 1. iWave multi-line tracking test. The four plots each
represent a different output of iWave. The top left plot is
the output data in the time domain. The top right is the
internal error calculated for the estimation. The bottom left
and right are the frequency and amplitude estimations respec-
tively. Each colored line is a different iteration of iWave trying
to track one of the lines with different fguess values. The red
line starts at a frequency of 37 Hz, green line at 34 Hz, and
black line at 32 Hz. As shown in the bottom left plot, iWave
only locks onto the 32 Hz and 35 Hz signals since those are
the closest lines to the fguess values despite this meaning that
the 35-Hz line is tracked twice. The 7 value was set to 1 s.

B. Tracking example

The two input parameters of iWave that have an effect
on its ability to track are the initial guess of the sig-
nal frequency, fguess, and the characteristic timescale of
the signal, 7. In order to better understand how iWave
works in relation to these parameters, tests were done
with different iWave fguess and 7 values in multiple cir-
cumstances.

In order to test iWave’s responses to different fgess val-
ues, a multi-line tracking test was conducted. This test
was done with signals at 30 Hz, 32 Hz, and 35 Hz with-
out additive noise. When the fgucss values matched the
true signal frequencies, iWave locked on to all of the lines
immediately. However, if the fguess values were changed
to the point where two fguess values were closer to a sin-
gle line than either of the other lines, iWave would track
the same line twice. This duplication can be clearly seen
in Figure 1 where the 35-Hz line is tracked twice since
the fsuess values were set to 32 Hz, 34 Hz, and 37 Hz.
This implies that, when tracking signals at close frequen-
cies, setting fsuess close to the true values is important
to avoid duplicated tracking.

Another test that was done with iWave involved track-
ing a synthetic GW signal within noise. The main pur-
pose of this test was to clearly see the effect of 7 on
iWave’s ability to track this signal with varying fre-
quency. The synthetic signal starts at 1000 Hz, so we
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FIG. 2. iWave outputs for injected signal in Gaussian noise
when 7 = 1.5 s and fguess = 1000 Hz. The top left plot is
the amplitude estimate of the signal. The top right plot is
the error of the estimation. The bottom left plot shows the
frequency estimate. The bottom right plot is the iWave in-
phase output. As shown in the error and frequency plots,
iWave tracks the evolving signal in the simulated time-series
and can lock on to the signal after ~ 180 s.

fix fouess at 1000 Hz. A set of 7 values, 0.1 s, 0.5 s,
1.0 s, 1.5 s, and 2.0 s, were tested. In this case, a 7
value of 1.5 s yielded the smallest frequency-based root-
mean-square (RMS) error once iWave locked onto the sig-
nal. Figure 2 shows the iWave output for this test with
7 = 1.5 s. These test results indicate that, when track-
ing a signal, different iWave 7 values should be tested in
order to obtain the optimal tracking results.

IIT. TRACKING LONG-TRANSIENT GW
SIGNALS

A. Signal model

Our search using iWave does not rely on a particu-
lar signal model in order to be successful in tracking an
evolving signal. However, we still need a set of mod-
eled synthetic signals to test iWave’s abilities. Hence,
we simulate signals using a model that has been used in
other studies searching for GW signals from BNS post-
merger remnants [14, 15]. This model describes the ex-
pected GW signals from a rapidly spinning-down mil-
lisecond magnetar born after a BNS merger [16]. The
time-dependent GW frequency is given by [15, 16]

Ly, 3)

Tagw

faw () = fo(1 +

where T,y is the spin-down timescale, fy is the initial
GW frequency at t = 0 s, and n is the breaking index. A
braking index of n = 5 is preferred in our study because
it simulates the signal from a source whose energy loss is
dominated by GW emission. The GW strain amplitude

is [15, 16]

2
nott) = TS 2 ), ()

cd

where G is Newton’s gravitational constant, c is the speed
of light, I, is the principal moment of inertia, € is the
mass ellipticity of the remnant, and d is the distance to
the source.

B. Tracking results

Using synthetic signals described in Section IITA, we
test iWave’s sensitivity. In our experiments, we inject the
signal into Gaussian noise. Similar tests in detector noise
remain to be conducted. All of the simulations described
in this section are based on a set of fixed parameters:
fo = 2000 Hz, 7gw = 10000 s, n = 5, ¢ = 0.01, and
I, =10* gcm?. We test iWave’s sensitivity by varying
parameter d and quantifying the maximum d at which
the signal can be recovered. Figure 3-5 show the iWave
output plotted on top of the simulated signal at various
distances.
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FIG. 3. Simulated signal and iWave output frequency (d =
1 Mpc). The black curve indicates the signal frequency as a
function of time. The red curve is the estimated signal fre-
quency from iWave. The iWave output matches the injection
throughout the entire tracking period.

We tested d values from 1 Mpc to 10 Mpc. As shown
in Figure 3, the estimated frequency perfectly matches
the injection. This same level of matching is found until
d is enlarged to 8 Mpc, where iWave only partially recov-
ers the injected signal path. Figure 4 plots the estimated
frequency over the injected signal path when d = 8 Mpc.
Towards the end of the tracking period, there is some
inconsistency between the output and the signal. For
d > 8Mpc, iWave begins to completely lose the signal
after a period of time. This is evident when d is set to
10 Mpc as shown in Figure 5. The reason why iWave
starts to lose the signal near the ends is because the am-
plitude of the signal (hg) decreases with time. Some-
times, because of this decrease in amplitude, the length
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FIG. 4. Simulated signal and iWave output frequency (d =
8 Mpc). The black curve indicates the signal frequency as
a function of time. The red curve is the estimated signal
frequency from iWave. The iWave output matches the injec-
tion for most of the tracking period and only loses the signal
slightly towards the end of the tracking period.
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FIG. 5. Simulated signal and iWave output frequency (d =
10 Mpc). The black curve indicates the signal frequency as
a function of time. The red curve is the estimated signal fre-
quency from iWave. The iWave output matches the injection
at the beginning and completely loses the signal at the end of
the tracking period.

of the signal observing time ends up harming the accu-
racy since the amplitude will be too small to pick up
within the noise. Because of this, we need to find an
optimal tracking duration.

In order to quantify how accurate iWave is in its fre-
quency tracking, Figure 6 plots the RMS error as a func-
tion of source distance with different signal timescales. A
smaller 74, value indicates that the signal evolves more
rapidly. We tested 74y values of 102 s, 103 s, 10% s, and
10° s. The other parameters are fixed: f; = 2000 Hz,
n =25 ¢ =001, and I,, = 10% gcm?. It is shown
that iWave is better at tracking longer signals that do
not evolve rapidly. The sensitivity limits seem to be
consistent with other studies based on the same signal
model. However, we are currently only testing iWave
with one detector at a time, so we hope that iWave’s sen-
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FIG. 6. RMS error in frequency as a function of source dis-
tance. The markers indicate the signal spin-down timescale
Tew, as shown in the legend. The limits for iWave to accu-
rately recover a signal is at d ~ 3 Mpc and d ~ 8 Mpc for
Tew = 10% 5 and 74w = 10* s, respectively.

sitivity will improve with inputs from multiple detectors.
We also wish to run these simulations in real detector
noise instead of Gaussian noise. Also, a detection statis-
tic is still missing from these simulations. While iWave
seems to be comparable to other methods with this ini-
tial premature comparison, iWave is not sensitive enough
to be able to track remnant from GW170817 since it was
40 Mpc away. However, using iWave is a good starting
point in preparation for future BNS events.

IV. DISCUSSION

Another possible application of iWave is tracking and
removing spectral noise lines. In order to test this ap-
plication, we had iWave track the 120-Hz power main
line harmonic in the Livingston strain data starting at
GPS time 1241136018 and ending 600 s after. We used
a bandpass filter with a lower bound of 115 Hz and a
higher bound of 125 Hz so that iWave can focus on the
frequency band where the 120-Hz power main line is to
avoid louder lines nearby. Figure 7 shows the filtered data
compared to the cleaned data after subtracting iWave’s
output from the filtered data. As shown in the figure,
the cleaned data no longer contain the peak at 120 Hz.

Figure 8 shows the iWave output in this tracking exam-
ple. The 120-Hz power line can fluctuate slightly in fre-
quency over the time period, so the wandering estimated
frequency seems normal. However, for a while the am-
plitude estimates were inaccurate — being smaller than
the raw/filtered data by an order of magnitude. This has
recently been investigated and confirmed to be an impact
from the 7 value chosen. We have 7 = 4.5 in this test,
which does not satisfy the requirement.

Only limited and preliminary tests have been con-
ducted to test the capabilities of iWave in noise line sub-
traction. These preliminary studies seem promising. Fur-
ther studies remain to be carried out.
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FIG. 7. Example of data cleaning with iWave. The black
curve indicates the 120-Hz power main line harmonic after
passing through a bandpass filter. The red curve is the
cleaned data after subtracting the output of iWave.
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FIG. 8. iWave tracking of the 120-Hz power main line. The
top panel is the frequency estimate; it is as expected that the
line frequency wanders. The middle panel shows the ampli-
tude estimate. The bottom panel is the error of the estima-
tion.

V. CONCLUSION

In this article, we present a preliminary study to use an
adaptive hybrid filter, iWave, as an alternative method to
search for long-transient GW signals in time domain. We
show preliminary test results, demonstrate how iWave
tracks long-transient GW signals, quantify the sensitiv-
ity in Gaussian noise simulations, and discuss how to im-
prove the implementation. We also discuss the possibility
of using iWave to track and remove spectral noise lines.
We hope to fully implement iWave as a time-domain GW
signal tracking method and a noise subtraction tool in fu-
ture GW data analyses after a more thorough study of
this method.
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