

Motivation

How do we go from this...

Motivation

• Measure the properties of individual detections...

Motivation

And of the underlying population

Bayes' Theorem

$$p(m{ heta}|d,H) = rac{p(d|m{ heta},H)p(m{ heta}|H)}{p(d|H)}$$
 parameters data model $p(d|m{ heta},H)p(m{ heta}|H)$

Bayes' Theorem Components

• Posterior – probability of the parameters θ given the data d and model H

$$p(\boldsymbol{\theta}|d,H)$$

• Likelihood – probability of the data d for parameters θ and model H

$$p(d|\boldsymbol{\theta}, H) \equiv \mathcal{L}(d|\boldsymbol{\theta}, H)$$

• Prior – initial probability of the parameters θ under model H

$$p(\boldsymbol{\theta}|H) \equiv \pi(\boldsymbol{\theta}|H)$$

Bayes' Theorem Components

Evidence – normalization constant for the posterior, marginalized likelihood

$$p(d|H) \equiv \mathcal{Z}_H = \int \mathcal{L}(d|\boldsymbol{\theta}, H) \pi(\boldsymbol{\theta}|H) d\theta$$

Putting it all together:

$$p(\boldsymbol{\theta}|d, H) = \frac{\mathcal{L}(d|\boldsymbol{\theta}, H)\pi(\boldsymbol{\theta}|H)}{\mathcal{Z}_H}$$

LIGO Noise Properties

The data consists of both a noise contribution and an astrophysical component

$$\tilde{d}(f) = \tilde{n}(f) + \tilde{h}(\boldsymbol{\theta}; f)$$
 noise astrophysical contribution

• The noise is typically assumed to be stationary and Gaussian and is characterized by the power spectral density (PSD)

$$\langle \tilde{n}^*(f_i)\tilde{n}(f_j)\rangle = \frac{T}{2}S_n(f)\delta_{ij}$$

• T is the segment duration

LIGO Noise Properties

• When the noise is well-behaved, the strain follows a unit Gaussian distribution about the square root of the PSD (in the absence of a

Calculating the PSD

- Off-source method
 - Also called the periodogram method or Welch method
 - Use a long stretch of data either before or after but always excluding the analysis segment
 - Split the data into short segments and calculate $|\tilde{d}(f_i)|^2$ for each segment after windowing the data
 - Take the median of the periodograms from each short data segment

Calculating the PSD

- On-source method
 - Model the PSD as a sum of a broadband spline and narrowband Lorentzians using the BayesLine algorithm
 - Using only the data from the analysis segment, infer the spline and Lorentzian parameters that best characterize the PSD
 - Requires significantly less data → more likely that it will be stationary and Gaussian over a shorter period of time

Littenberg and Cornish (2014)

The Gravitational-Wave Likelihood

• In the presence of a signal, the residual between the data and the best-matching template should also follow a unit Gaussian about the square root of the PSD:

$$\mathcal{L}(d(f_i)|\boldsymbol{\theta}) = \frac{2}{T\pi S_n(f_i)} \exp\left(-\frac{2|\tilde{d}(f_i) - \tilde{h}(\boldsymbol{\theta}; f_i)|^2}{T S_n(f_i)}\right)$$

$$\mathcal{L}(d|\boldsymbol{\theta}) = \prod_{i} \mathcal{L}(d(f_i)|\boldsymbol{\theta})$$

Total likelihood is the product of the individual frequency bins

Biscoveanu ODW3

The astrophysical contribution

• For compact binary coalescences, the astrophysical contribution is a waveform that depends on 17 parameters

Intrinsic:

Component masses Component spins (Tidal deformabilities)

Extrinsic:

Sky location
Distance
Inclination
Polarization
Reference phase
Time at coalescence

• Other models for other types of signals – sine gaussian wavelets, supernova waveforms, etc.

Measuring source properties from the waveform

$$\tilde{h}_{+}(f) = \frac{1}{2} \mathcal{A}_{GW}(f) (1 + \cos^{2} \iota) \cos \phi_{GW}(f)$$

$$\tilde{h}_{\times}(f) = \mathcal{A}_{GW}(f) \cos \iota \sin \phi_{GW}(f)$$

$$\tilde{h}(f) = F_{+} \tilde{h}_{+}(f) + F_{\times} \tilde{h}_{\times}(f)$$

• Review:

- Two polarizations
- Dependence on mass, spins, distance, etc. encoded in amplitude and phase
- Antenna patterns depend on the detector geometry and encode the effect of the extrinsic parameters

Biscoveanu ODW3

Effect of Mass

- Bigger mass → bigger amplitude
- Final mass measured from ringdown

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$\mathcal{A}_{\mathrm{GW}} \propto rac{\mathcal{M}^{5/6} f^{-7/6}}{d_L}$$

Effect of Spin

- More positive aligned spin → orbital hangup
- Takes longer for the system to merge

- Precessing spins → amplitude modulations
- Spins misaligned to orbital angular momentum

Priors

- Uniform in some parameterization of the mass
- Enforce $m_1 > m_2$
- Uniform in spin magnitudes
- Spin angles isotropic on the sphere
- Isotropic on the sky for right ascension and declination
- Uniform in luminosity volume ($\propto d_L^2$)

Bayesian Model Selection

- Simple example signal versus noise
- Noise evidence is the likelihood evaluated in with no signal model (2)

$$\mathcal{Z}_N = \prod_i \frac{2}{T\pi S_n(f_i)} \exp\left(-\frac{2|\tilde{d}(f_i)|^2}{T S_n(f_i)}\right)$$

• Bayes factor:

$$BF_N^S = \frac{\mathcal{Z}_S}{\mathcal{Z}_N}$$

Biscoveanu ODW3

Bayesian Model Selection

• Another example – aligned vs precessing spins

$$BF_P^A = \frac{\int \mathcal{L}(d|\boldsymbol{\theta})\pi(\boldsymbol{\theta}|A) \ d\theta}{\int \mathcal{L}(d|\boldsymbol{\theta})\pi(\boldsymbol{\theta}|P) \ d\theta}$$

- For aligned spins, prior is a delta function at zero on tilt angles
- Typically BF > 3000 is significant

Sampling methods

- How do you actually obtain $p(\theta|d)$?
- Could evaluate the likelihood on a grid, but this isn't feasible with 17 parameters
- Instead use a stochastic sampler:
 - Markov Chain Monte Carlo (MCMC)
 - Nested sampling
- Obtain samples from the posterior probability distribution

Bilby

- The **B**ayesian **I**nference **L**i**b**rar**y** is a software package designed to enable parameter estimation for compact binary coalescences and more general problems
- Emphasis on modularity, transparency, and ease of use
- Wrapper for many different external samplers including dynesty, pymultinest, cpnest, emcee, ptemcee, and others
- Can analyze real data from LIGO and Virgo or simulated signals

Biscoveanu ODW3

Hierarchical Modeling

- What if we want to study a population of sources?
- Example: what is the distribution of primary masses for binary black holes?
- The model for the population distribution is called the hyper-prior: $\pi(\boldsymbol{\theta}|\boldsymbol{\Lambda})$ where $\boldsymbol{\theta}$ are the original parameters, and $\boldsymbol{\Lambda}$ are the hyper-parameters
- Example: parameterize the primary mass distribution as a power law $\pi(m_1|\alpha) \propto m_1^{lpha}$

Hierarchical Modeling

• The new likelihood is the original likelihood marginalized over the original parameters:

$$\mathcal{L}(d|\mathbf{\Lambda}) = \int dm{ heta} \mathcal{L}(d|m{ heta}, \mathbf{\Lambda}) \pi(m{ heta}|\mathbf{\Lambda})$$
 Hyper-prior Original likelihood (doesn't depend on hyper-parameters) $= \int dm{ heta} \mathcal{L}(d|m{ heta}) \pi(m{ heta}|\mathbf{\Lambda})$ Original evidence $= \int dm{ heta} \frac{p(m{ heta}|d)\mathcal{Z}_{m{ heta}}}{\pi_0(m{ heta})} \pi(m{ heta}|\mathbf{\Lambda})$
Biscoveanu ODW3 Original prior

Combining multiple events

 Hyper-parameter likelihood for a population is the product of individual-event likelihoods:

$$\mathcal{L}(\{d\}|\mathbf{\Lambda}) = \prod_{j}^{N} \mathcal{L}(d_{j}|\mathbf{\Lambda})$$

- Complications arise due to selection biases more likely to detect more massive systems that are close by
- Need to account for probability of detecting signals across the parameter space of interest

Additional Resources

- https://lscsoft.docs.ligo.org/bilby/ Bilby documentation
- https://chi-feng.github.io/mcmc-demo/ cool animations of MCMC
- Further reading:
 - Veitch et. al. (2015) https://arxiv.org/pdf/1409.7215.pdf
 - Ashton et. al. (2018) https://arxiv.org/abs/1811.02042
 - Thrane and Talbot (2019) https://arxiv.org/pdf/1809.02293.pdf

MCMC

- Particles undergo a random walk through the parameter space, where the probability of jumping to a new location is dictated by the proposal density function
- Determining a suitable proposal density function is the hard part of sampling – a simple example is a Gaussian centered on the current location
- Burn-in period before the walkers "forget" their starting positions
- Adjacent samples in a chain are correlated chains need to be thinned by the integrated autocorrelation time

Nested Sampling

- Sprinkle a set of live points over the prior space
- Replace the live point with the lowest likelihood with a point with a higher likelihood
- Evidence is the product of the likelihood at the discarded point and the difference in the prior volume between iterations
 Obtain samples from the prior in the process of
 - calculating the evidence Proceed until a termination criterion is reached

Using discrete posterior samples

• For a probability distribution represented by a discrete set of posterior samples: $E[f] = \int f(x) p(x) dx$

$$= \frac{1}{N} \sum_{i}^{N} f(x_i)$$

So the hyper-PE likelihood becomes a ratio of priors:

$$\mathcal{L}(d|\mathbf{\Lambda}) = \frac{\mathcal{Z}_{\theta}}{n} \sum_{i}^{n} \frac{\pi(\boldsymbol{\theta}_{i}|\mathbf{\Lambda})}{\pi_{0}(\boldsymbol{\theta}_{i})}$$