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Strain (10~%%)

Motivation

* How do we go from this...
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https://arxiv.org/abs/1602.03837
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Motivation

» Measure the properties of individual detections...
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Motivation

» And of the underlying population
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Bayes’ Theorem




Bayes’ Theorem Components

 Posterior — probability of the parameters 6 given the data d and model H
p(0|d, H)
* Likelihood — probability of the data d for parameters 8 and model H
p(d|6,H) = L(d|6,H)
 Prior - initial probability of the parameters 8 under model H

p(0|H) = n(0|H)



Bayes’ Theorem Components

- Evidence — normalization constant for the posterior, marginalized likelihood

p(d|H) = 257 — / £(d|0. H)r(0|H) db

Putting it all together:

o(0]d, 1) — 2419 H)m(01H)

ZH




LIGO Noise Properties

» The data consists of both a noise contribution and an astrophysical
component

~

d(f) = n(f) + h(0; f)
- \

noise astrophysical contribution

* The noise is typically assumed to be stationary and Gaussian and is
characterized by the power spectral density (PSD)

(5 (£ ) = 5 Su(F)3

T is the segment duration
Biscoveanu ODW?3



strain [1/V Hz]

LIGO Noise Properties

102 4

« When the noise is well-behaved, the strain follows a unit Gaussian
distribution about the square root of the PSD (in the absence of a

signal)
= data

f[Hz] Biscoveanu ODWS3



Calculating the PSD

 Off-source method 0

» Also called the periodogram method |
or Welch method

» Use a long stretch of data either = TN
before or after but always excluding = ... W/
the analysis segment ? 'y "

* Split the data into short segments R L ) | ;
and calculate |d(f:)|? for each 0o | Y 't?‘.'i-_;.u..).;”“ !
segment after windowing the data ||m 5125 W ey

» Take the median of the T T e T e
periodograms from each short data Freauency [HZ

segment
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Calculating the PSD

36 T
« On-source method 107 T ARARERRRRERERRS

2
* Model the PSD as a sum of a Cubic Sp||i:g},|“
broadband spline and
narrowband Lorentzians using
the BayesLine algorithm

 Using only the data from the
analysis segment, infer the

Lorentzian fit -~

R ——

e
e —————

Power spectral density (Hz ')

spline and Lorentzian \ ;
parameters that best w
characterize the PSD 10

* Requires .s1gn1flcan’.tly lgss data ode Lt i T T Y T
- more likely that it will be 50 100 160 200 280 1300 350 400

stationary and Gaussian over a

. . frequency (Hz
shorter period of time equency (Hz)

Littenberg and Cornish (2014)
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The Gravitational-Wave Likelihood

* In the presence of a signal, the residual between the data and
the best-matching template should also follow a unit Gaussian
about the square root of the PSD:

L(d(f;)|0) = T Si(fi) P Q‘d(ffilz ;n}z;?j = )

» Total likelihood is the product of the individual frequency bins



The astrophysical contribution

« For compact binary coalescences, the astrophysical contribution is a
waveform that depends on 17 parameters

Intrinsic: /\ Extrinsic:
Component masses %ky location
Component spins 1sicf51nc§
(Tidal deformabilities) « Inclination
‘ GWenergy  Polarization
Reference phase
mo Time at coalescence

ml Credit: Salvatore Vitale

» Other models for other types of signals — sine gaussian wavelets,
supernova waveforms, etc.

Biscoveanu ODW?3 13



Measuring source properties from the waveform

hy(f) = %Acw(f)(l + cos” 1) cos paw (f)
hy (f) = Aaw (f) cos tsin paw (f)

h(f) = Fihi(f) + Fxhy(f)

* Review:
« Two polarizations

* Dependence on mass, spins, distance, etc. encoded in amplitude and phase

« Antenna patterns depend on the detector geometry and encode the effect
of the extrinsic parameters



Effect of Mass

 Bigger mass - bigger amplitude
 Final mass measured from ringdown

ﬁﬁﬁﬁﬁﬁﬁ

15



Effect of Spin

« More positive aligned spin - * Precessing spins - amplitude
orbital hangup modulations

 Takes longer for the system to  Spins misaligned to orbital
merge angular momentum
- no spin r aligned spin

751 —— high spin [\ F ﬂ 751 —— precessing spin

-75 1 V u . 75

005
Time (s) Biscoveanu ODW?3 Time (s)



Priors

» Uniform in some parameterization of the mass

* Enforce my; > m,

 Uniform in spin magnitudes

 Spin angles isotropic on the sphere

* [sotropic on the sky for right ascension and declination
e Uniform in luminosity volume («x d?)



Bayesian Model Selection

» Simple example - signal versus noise
» Noise evidence is the likelihood evaluated in with no signal

model B 9 Q‘J(fz)P
N = H TmSn(f:) P ( T Sn(fi)

1

 Bayes factor:

Zs
ZN

BF2 =




Bayesian Model Selection

« Another example - aligned vs precessing spins

A JL(d0)T(6|A) db
Blp = [ L(d|0)7(8]P) db

» For aligned spins, prior is a delta function at zero on tilt angles
» Typically BF > 3000 is significant



Sampling methods

* How do you actually obtain p(6|d)?

 Could evaluate the likelihood on a grid, but this isn’t feasible
with 17 parameters

 Instead use a stochastic sampler:
« Markov Chain Monte Carlo (MCMC)
* Nested sampling

» Obtain samples from the posterior probability distribution



More details in
Tutorial 2.4!

The Bayesian Inference Library is a software
package designed to enable parameter
estimation for compact binary coalescences
and more general problems

Emphasis on modularity, transparency, and
ease of use

Wrapper for many different external samplers
including dynesty, pymultinest, cpnest, emcee,
ptemcee, and others

Can analyze real data from LIGO and Virgo or
simulated signals

Biscoveanu ODW?3 21



Hierarchical Modeling

« What if we want to study a population of sources?

« Example: what is the distribution of primary masses for binary
black holes?

» The model for the population distribution is called the hyper-
prior: w(@|A) where 0 are the original parameters, and A are
the hyper-parameters

« Example: parameterize the primary mass distribution as a

|
power law 7T(7711|04) « m(f



Hierarchical Modeling

« The new likelihood is the original likelihood marginalized over
the original parameters:

L(d|A) = / d0C(d|6. A)r(B|A)-

Original likelihood (doesn’t

~depend on hyper-parameters)
- / d0.L(d|0)r(8|A)

P Original evidence

D ( 9 d ) Z@
— [ dO T(G|A
/ 0 (H ) ( ‘ )
Biscoveanu ODW3 \ 23

Original prior




Combining multiple events

« Hyper-parameter likelihood for a population is the product of
individual-event likelihoods:

L(d}[A) = HC dj|A)

« Complications arise due to selectlon biases — more likely to
detect more massive systems that are close by

* Need to account for probability of detecting signals across the
parameter space of interest



Additional Resources

* https://Iscsoft.docs.ligo.org/bilby/ - Bilby documentation

* https://chi-feng.github.io/mcmc-demo/ - cool animations of
MCMC

» Further reading:
* Veitch et. al. (2015) https://arxiv.org/pdf/1409.7215.pdf

« Ashton et. al. (2018) https://arxiv.org/abs/1811.02042
« Thrane and Talbot (2019) https://arxiv.org/pdf/1809.02293.pdf

Biscoveanu ODW?3 25
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MCMC

« Particles undergo a random walk through the

parameter space, where the probability of 08 .

jumping to a new location is dictated by the '

proposal density function 06

: , g YO Burn-in

« Determining a suitable proposal density S

function is the hard part of sampling — a 3 04 -

simple example is a Gaussian centered on the g

current location 5 0.2 - |
 Burn-in period before the walkers “forget”

their starting positions 001

0 200 400 600 800

« Adjacent samples in a chain are correlated - L
Position in chain

chains need to be thinned by the integrated
autocorrelation time

Biscoveanu ODW?3 26




Nested Sampling

()

(|

F. Feroz et. al. (2008)

X,y Xa

Biscoveanu ODW?3

Sprinkle a set of live points
over the prior space
Replace the live point with
the lowest likelihood with
a point with a higher
likelihood

Evidence is the product of
the likelihood at the
discarded point and the
difference in the prior
volume between iterations
Obtain samples from the
prior in the process of
calculating the evidence
Proceed until a
termination criterion is

reached
27



Using discrete posterior samples

 For a probability distribution represented by a discrete set of

osterior samples:
PRI Bl = [ f@)pla)da

| N
:N;f(%)

* So the hyper-PE likelihood becomes a ratio of priors:

cwam =35

1



