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Motivation

• How do we go from this… to this?

https://arxiv.org/pdf/1602.03840v2.pdf
https://arxiv.org/abs/1602.03837 Biscoveanu ODW3 2



Motivation
• Measure the properties of individual detections…
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https://arxiv.org/pdf/1811.12907.pdf



Motivation
• And of the underlying population
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https://arxiv.org/pdf/1811.12940.pdf



Bayes’ Theorem

p(✓|d,H) =
p(d|✓, H)p(✓|H)

p(d|H)

posterior
likelihood prior

evidenceparameters data model
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Bayes’ Theorem Components

• Posterior – probability of the parameters ! given the data d and model H

• Likelihood – probability of the data d for parameters ! and model H

• Prior – initial probability of the parameters ! under model H

p(✓|d,H)

p(d|✓, H) ⌘ L(d|✓, H)

p(✓|H) ⌘ ⇡(✓|H)
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Bayes’ Theorem Components

p(✓|d,H) =
L(d|✓, H)⇡(✓|H)

ZH

• Evidence – normalization constant for the posterior, marginalized likelihood

Putting it all together:

p(d|H) ⌘ ZH =

Z
L(d|✓, H)⇡(✓|H) d✓
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LIGO Noise Properties

• The data consists of both a noise contribution and an astrophysical 
component

• The noise is typically assumed to be stationary and Gaussian and is 
characterized by the power spectral density (PSD)

• T is the segment duration

d̃(f) = ñ(f) + h̃(✓; f)

hñ⇤(fi)ñ(fj)i =
T

2
Sn(f)�ij

noise astrophysical contribution 
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LIGO Noise Properties

• When the noise is well-behaved, the strain follows a unit Gaussian 
distribution about the square root of the PSD (in the absence of a 
signal)
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Calculating the PSD

• Off-source method
• Also called the periodogram method 

or Welch method
• Use a long stretch of data either 

before or after but always excluding 
the analysis segment

• Split the data into short segments 
and calculate           for each 
segment after windowing the data

• Take the median of the 
periodograms from each short data 
segment 
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Calculating the PSD
• On-source method

• Model the PSD as a sum of a 
broadband spline and 
narrowband Lorentzians using 
the BayesLine algorithm

• Using only the data from the 
analysis segment, infer the 
spline and Lorentzian 
parameters that best 
characterize the PSD

• Requires significantly less data 
à more likely that it will be 
stationary and Gaussian over a 
shorter period of time

Littenberg and Cornish (2014)
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The Gravitational-Wave Likelihood

• In the presence of a signal, the residual between the data and 
the best-matching template should also follow a unit Gaussian 
about the square root of the PSD:

• Total likelihood is the product of the individual frequency bins
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The astrophysical contribution

• For compact binary coalescences, the astrophysical contribution is a 
waveform that depends on 17 parameters 

• Other models for other types of signals – sine gaussian wavelets, 
supernova waveforms, etc.

Intrinsic:
Component masses
Component spins
(Tidal deformabilities)

Extrinsic:
Sky location
Distance
Inclination
Polarization
Reference phase
Time at coalescence

Credit: Salvatore Vitale

Biscoveanu ODW3 13



Measuring source properties from the waveform

h̃+(f) =
1

2
AGW(f)(1 + cos2 ◆) cos�GW(f)

h̃⇥(f) = AGW(f) cos ◆ sin�GW(f)

h̃(f) = F+h̃+(f) + F⇥h̃⇥(f)

• Review:
• Two polarizations
• Dependence on mass, spins, distance, etc. encoded in amplitude and phase
• Antenna patterns depend on the detector geometry and encode the effect 

of the extrinsic parameters
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Effect of Mass

• Bigger mass à bigger amplitude
• Final mass measured from ringdown

AGW / M5/6f�7/6

dL

M =
(m1m2)3/5

(m1 +m2)1/5
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Effect of Spin
• More positive aligned spin à

orbital hangup
• Takes longer for the system to 

merge

• Precessing spins à amplitude 
modulations
• Spins misaligned to orbital 

angular momentum
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Priors

• Uniform in some parameterization of the mass
• Enforce !" > !$
• Uniform in spin magnitudes
• Spin angles isotropic on the sphere
• Isotropic on the sky for right ascension and declination
• Uniform in luminosity volume (∝ &'$)
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Bayesian Model Selection

• Simple example – signal versus noise
• Noise evidence is the likelihood evaluated in with no signal 

model

• Bayes factor:

BFS
N =

ZS
ZN
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Bayesian Model Selection

• Another example – aligned vs precessing spins

• For aligned spins, prior is a delta function at zero on tilt angles
• Typically BF > 3000 is significant

BFA
P =

R
L(d|✓)⇡(✓|A) d✓R
L(d|✓)⇡(✓|P ) d✓
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Sampling methods

• How do you actually obtain ! " # ?
• Could evaluate the likelihood on a grid, but this isn’t feasible 

with 17 parameters
• Instead use a stochastic sampler:
• Markov Chain Monte Carlo (MCMC)
• Nested sampling

• Obtain samples from the posterior probability distribution
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Bilby

• The Bayesian Inference Library is a software 
package designed to enable parameter 
estimation for compact binary coalescences 
and more general problems

• Emphasis on modularity, transparency, and 
ease of use

• Wrapper for many different external samplers 
including dynesty, pymultinest, cpnest, emcee,
ptemcee, and others

• Can analyze real data from LIGO and Virgo or 
simulated signals
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More details in 
Tutorial 2.4!



Hierarchical Modeling

• What if we want to study a population of sources?
• Example: what is the distribution of primary masses for binary 

black holes?
• The model for the population distribution is called the hyper-

prior: this is just where ! are the original parameters, and " are 
the hyper-parameters
• Example: parameterize the primary mass distribution as a 

power law

⇡(✓|⇤)

⇡(m1|↵) / m↵
1

Biscoveanu ODW3 22



Hierarchical Modeling

• The new likelihood is the original likelihood marginalized over 
the original parameters:

L(d|⇤) =

Z
d✓L(d|✓,⇤)⇡(✓|⇤)

=

Z
d✓L(d|✓)⇡(✓|⇤)

=

Z
d✓

p(✓|d)Z✓

⇡0(✓)
⇡(✓|⇤)

Hyper-prior

Original likelihood (doesn’t 
depend on hyper-parameters)

Original evidence

Original priorBiscoveanu ODW3 23



Combining multiple events

• Hyper-parameter likelihood for a population is the product of 
individual-event likelihoods:

• Complications arise due to selection biases – more likely to 
detect more massive systems that are close by
• Need to account for probability of detecting signals across the 

parameter space of interest
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L({d}|⇤) =
NY

j

L(dj |⇤)



Additional Resources

• https://lscsoft.docs.ligo.org/bilby/ - Bilby documentation
• https://chi-feng.github.io/mcmc-demo/ - cool animations of 

MCMC
• Further reading:
• Veitch et. al. (2015) https://arxiv.org/pdf/1409.7215.pdf
• Ashton et. al. (2018) https://arxiv.org/abs/1811.02042
• Thrane and Talbot (2019) https://arxiv.org/pdf/1809.02293.pdf
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MCMC
• Particles undergo a random walk through the 

parameter space, where the probability of 
jumping to a new location is dictated by the 
proposal density function

• Determining a suitable proposal density 
function is the hard part of sampling – a 
simple example is a Gaussian centered on the 
current location

• Burn-in period before the walkers “forget” 
their starting positions

• Adjacent samples in a chain are correlated –
chains need to be thinned by the integrated 
autocorrelation time

Position in chain

Pa
ra

m
et

er
 va

lu
e Burn-in
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Nested Sampling
• Sprinkle a set of live points

over the prior space
• Replace the live point with 

the lowest likelihood with 
a point with a higher 
likelihood

• Evidence is the product of 
the likelihood at the 
discarded point and the 
difference in the prior 
volume between iterations

• Obtain samples from the 
prior in the process of 
calculating the evidence

• Proceed until a 
termination criterion is 
reached

F. Feroz et. al. (2008)
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Using discrete posterior samples

• For a probability distribution represented by a discrete set of 
posterior samples:

• So the hyper-PE likelihood becomes a ratio of priors:

E[f ] =

Z
f(x)p(x)dx

=
1

N

NX

i

f(xi)

L(d|⇤) =
Z✓

n

nX

i

⇡(✓i|⇤)

⇡0(✓i)
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