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Multifrequency  Acoustooptic  Diffraction 

Absrract-A coupled  mode  formulation is developed for the  analysis 
of  acoustooptic  diffraction  with  multiple  acoustic waves  at different 
carrier frequencies  For  the Raman-Nath (thin  ultrasonic grating) re- 
gime,  analytic  solutions are obtained  for N s i g n a l s  In the Bragg (thick 
ultrasonic grating) limit,  analytic  solutions are obtained  for two inde- 
pendent signals. Truncated series approximations  for N small  signals 
are given  for both regimes. The theory is applied to the  quantitative 
evaluation of linear  and  nonlinear effects  occurring in acoustooptic 
spectrum analysis,  optical  information  processing,  multichannel  record- 
ing, and  multiple beam deflection and modulation.  These  include  dif- 
fraction  efficiency,  compression, cross modulation,  and  spurious  inter- 
modulation  intensities.  The  results  show  that all nonlinear  effects 
considered are substantially  reduced  in  the Brag limit.  This is sup- 
ported  by  experimental  measurements of  the  various  effects, in good 
agreement  with  the Bragg limit  theory. 

I.  INTRODUCTION 

D IFFRACTION  of  a  light beam  by multiple  simultaneous 
acoustic waves occurs in a  number of acoustooptic  ap- 

plications  including  radio  frequency  spectrum  analysis [ l]  - 
[3] , real-time  signal  processing [4] - [ 8 ] ,  multichannel  record- 
ing [2], [9] , multiple beam  deflection  and  modulation [ l o ] ,  
and  frequency  coded television  display [5] . When multiple 
finite  amplitude  acoustic waves diffract a laser beam,  multiple 
diffracted  beams are  generated,  and  a  number of nonlinear  ef- 
fects  occur [ 1 l ] .  These  include  cross  modulation  in  the am- 
plitudes of  the  diffracted  beams  and  the  generation of addi- 
tional  (spurious)  intermodulation  beams [ l ]  , [ 1 l ]  . These 
effects  establish  intrinsic  limits  for  the  dynamic  range [ l ]  , 
[3],  [7] and  maximum  diffraction  efficiencies [lo] in  multi- 
frequency  acoustooptic  applications. 

The  diffraction of  a  plane wave monochromatic  light  beam 
by  a  single sound  beam has  been  reviewed  and  analyzed  by 
W. R. Klein  and D. B. Cook [12],  [l31 using  a coupled  mode 
formulation. By generalizing  this formulation to  include 
multiple  acoustic waves of  different  carrier  frequencies,  multi- 
frequency  diffraction  effects can  be quantitatively  analyzed. 
These  include  diffraction  efficiencies,  cross  modulation,  and 
intermodulation  mode  amplitudes.  The  physical  assumptions 
and  mathematical  notation  are  compatible  with  the  analyses 
of Klein and Cook [ 121 , [ 131 , except for the  generalization to  
multiple signals. In  particular,  it is assumed that  the  modula- 
tion  of  the  index of refraction  due to a  sinusoidal input is 
purely  sinusoidal.  Then all nonlinear  optical  responses  are  due 
to  multiple  linear  acoustooptic  diffraction processes rather 
than  photoelastic or acoustic  nonlinearities [14]. The  results 
give lower  bounds  for  acoustooptic  diffraction  nonlinearities, 
independent of material  nonlinearities.  These  are  compared 
with  experimental  results  for  a glass acoustooptic  deflector. 
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Fig. 1. Multifrequency  acoustooptic  diffraction  geometry. 

The  interaction  geometry is shown in Fig. 1 .  The  sound 
waves of  frequencies f i  and f, with  corresponding  acoustic 
wavelengths A, and A, are  illustrated  propagating  with  veloc- 
ity V, along  the X direction  in an  optically  isotropic  medium 
with  index of refraction p. . The  thickness  of  the  ultrasonic 
gratings  along  the Z axis is L .  A collimated  beam  of  light of 
freespace  wavelength X is incident  on  the  sound field at an 
angle 0 from  the 2 axis,  in  the X2 plane. 

ate  a  principal  diffracted  beam  separated  from  the  incident 
beam  by  an  angle  (measured  in  the  medium) 20 i :  

Each  sound wave interacting  with  the  light  beam will  gener- 

2tIj = 2 sin-' - 
(2;0f1:) 

= (A) fi, Bi < 0.1 rad. 

This frequency  dispersion  of  the  acoustooptic  grating is the 
basis  for the use of  acoustooptic devices  in optical  deflection, 
spectrum analysis at  radio  and microwave  frequencies,  and 
multibeam  recording.  However,  the  generation of various 
diffracted  beams is not  completely  independent. Each  gener- 
ated  beam  depletes  the  source  beam  from  which all the  princi- 
pal beams  are  generated.  In  addition,  light  in  each  principal 
beam  may  be  rediffracted by  another  acoustooptic  grating. 
This  produces  cross  modulation  and  generates  intermodulation 
beams  corresponding to  sum  and  difference  frequencies fi f 4. 
In turn,  additional  intermodulation beams  may  be generated. 
Fig. 2 illustrates  the  dominant  beams  which may  be  generated 
when two signals  are  present.  Labeling  of the  modes  corre- 
sponds  to  the  frequency  shift  from  the  source  beam  frequency 
using radio  frequency analysis nomenclature.  The  correspond- 
ing frequency  shifts are indicated.  The angular deflection of 
each  beam  from  the  source  beam is proportional  to  the  fre- 
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2f2  SECOND  HARMONIC 

f l+f2 SUM  FREQUENCY G = + 2  

NOTE:  ANGLES  ARE  EXAGGERATED 2fl SECOND  HARMONIC 

2f2 - f1  THIRD  ORDER  INTERMODULATION 
f2 FREQUENCY 2 
f l  FREQUENCY 1 G = + l  

Zf, - f 2  THIRD  ORDER  INTERMODULATION 

f 2  - f l  DIFFERENCE  FREQUENCY 

SOURCE 

FREQUENCY: f = nlf1+n2f2 

DIFFRACTION  ORDERS:  G = n1+n2 

Fig. 2. Acoustooptic  generation of intermodulation  modes. 

quency  shift. As in single frequency  diffraction,  the  beams 
divide naturally  into  diffraction  orders: G = 0, * 1,+2, . . . . 
The  strongest  intermodulation  modes  which  interfere  spatially 
with  the  principal  modes in the  first  diffraction  order  corre- 
spond  to  frequencies 2fi - f i  and are  conventionally  termed 
third-order1  intermodulation  products because they  result 
from  a  third-order  interaction. This effect  limits  spurious 
free  dynamic range. A typical  intensity  spectrum is shown 
in Fig. 3.  

The  objective  of  this  work is to investigate quantitatively 
and  qualitatively  various  multifrequency  diffraction  effects, 
comparing  thick  (Bragg)  and  thin  (Raman-Nath)  acoustooptic 
diffraction devices. 

11. THEORY 
The  optical wave equation  for  the  electric  intensity is 

t 
T 

G = O  

G = -1 

ZERO ORDER FIRST ORDER 

Fig. 3. Two-tone  intermodulation  spectrum. 

assumed constant  for all modes (i.e., excluding  birefringent 
diffraction [ 151 ). A total of N signals is considered. 

The general  Fourier series for  the  electric  intensity is an 
N-tuple  expansion : 

where  the  refractive index  in  the region  of the  sound field 
(0 < z < L )  may be written as N 

n , = - -  n2=-m " ~ = - r n  

n,(w, t t S,) - 
N 

p ( x ,  t )  = p0 + C p, sin [(W&[ - k g x )  + S,] (2) 
m = 1  where 

where W& and klr, are the  circular  frequency  and  wavenumber nr 

of the  acoustic signal  of  wavelength A, ; p m  and 6, are the 
amplitude  and phase  of the refractive index  modulation  due  to m = l  

the mth  signal. p. is the  unperturbed  index of refraction, 

'* 
. ;'= pok(z cos 0 t x sin 0)  + C n ,  k g x  (4) 

( E )  represents ( n ,  , n 2 ,  . . . , n ~ )  and W and k are the  circular 
'To  avoid  confusion  between  diffraction  order  and  interaction  order, frequency  and for the light. nm may take any 

the  word  order  used  alone will be  used to refer to  interaction  order. positive or negative  integer  values. 
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Equation  (3)  indicates  that  the  circular  frequency  for  mode 
* ( i )  is 

N 
ot C n m u $  

m = l  

so that all intermodulation  modes are  represented  as well  as 
the  harmonic  diffraction  modes  present in the single frequency 
case [l21 . Each diffraction  order  contains  an  infinite  multi- 
plicity  of  modes,  corresponding to all combinations  of values 
for  the  various n,  such that C n ,  = G(E), the  number of the 
order. 

Coupled  Mode  Equations 
By substituting (2)-(4) into  the  optical wave equation, as- 

suming  small  variation in *(c) over optical wavelength dis- 
tances  and  optical  cycle  time  periods,  and  neglecting  quadratic 
terms  in I p ,  I, an infinite  set of coupled  mode  equations is 
obtained: 

where 

(A) represents (n l ,  n 2  , . . . , nN - nN),  

(A - ii,) represents ( n l ,  n,,. . . , n ,  n,  - 

(A t a,) represents (n l  , n , ,  . , n ,   n ,  t 

n N - l ,  n N ) .  

Equation ( 5 )  is the  multiple  signal  generalization  of  the 
acoustooptic  coupled  mode  equations  [12], [ 131. At this 
point  normalized  parameters [ 121  may  be  introduced to sim- 
plify  the analysis  of parameters: 

V, k p ,  L/cos 8 

E * ,  L 
Q. 

pok cos B 

m = l  

0, G (k& - k*)/k* 

and nl  , n,  , . * , nN take all integer  values. V, is the  normal- 
ized  index  of  refraction  modulation  amplitude  corresponding 
to p , .  CY is a  measure  of  the angle of incidence  of  the light on 
the  sound  field,  normalized  to  the angle between  diffraction 
orders. Q is a  measure  of  the  angle  between  diffraction  orders, 
normalized to  the diffraction  spread angle of  the  sound  field. 
These  parameters  correspond to  those  in  the single frequency 

analysis [ 121, [ 1 3 ] ,  except  that  the V, terms allow for  mul- 
tiple  signals  and (Y and Q are  defined  with  respect to  the mid- 
band  wavenumber k*. In addition, 0, is the  fractional devia- 
tion  of  the signal  wavenumber k g  from E*,  and G(E) is the 
diffraction  order  index,  defined previously. 

Some  important  examples  of values for the  normalized  pa- 
rameters  are Q << l in  the  Raman-Nath  diffraction regime; 
Q > 477 in the Bragg diffraction regime; 01 = 0 at  normal  inci- 
dence, I (Y I = $ for Bragg incidence  at  midband;  and 10, I < 5 
for  frequencies  within  an  octave  band. 

index: 
An additional  useful  parameter is the  interaction  order 

N 

m = l  

D is the  minimum  number  of  coupling  interactions involved 
in  the  generation of  a particular  mode. D determines  the  small 
signal  power dependence  of  the  intensity of the  mode. 

Using the  normalized  parameters,  the  coupled  mode  equa- 
tions  take  the  form: 

where 

AK(6) is the wavevector  mismatch or phase  mismatch  per 
unit  interaction  length of mode *(E) relative to  the  source 
mode *(c), for  which n ,  E 0. 

lem is more  elaborate  than  the single frequency analysis, im- 
portant  characteristics  are  maintained. Modes  whose orders 
G ( E )  differ  by  one  and  whose  frequencies  differ  by om are 
coupled  by  the  term V,. 

Although  the  coupled  mode  set  for  the  multifrequency  prob- 

Phase Match  Condition 
When the  accumulated phase  mismatch  over  the  interaction 

length AKL is below 7712 radians,  unidirectional  power  flow 
between  the  modes  occurs.  For larger  mismatch  the  power 
flow is oscillatory  over the  path L,  and cumulative  energy 
transfer is limited. 

Initial Conditions 
The  initial  conditions  for  the  diffraction  problem  place all 

energy  in  the  source  mode  at z = 0: 

*(E) = 1 

*(E) = 0, otherwise. 

Coupled  Mode  Equation  Solutions 

be found  only  under  limited  conditions.  The  solutions  pre- 
Explicit  literal  solutions to  the  coupled  mode  equations  can 



Bragg Regime (Q > 4n) 

mized for  one  diffraction  order besides zeroth  order, as  es- 
tablished  by  the  value  of a. In most  practical  applications, 

in  either case. 

(y = ti, the wavevector  mismatch is  given  as follows. For 
modes in the  zeroth  order, G = 0, 

In the Bragg regime,  wavevector  mismatch  can  only  be  mini- 

a ;2: *L 2 ,  matching  order G = +_l.  Similar  results  are obtained 

With  Bragg incidence  at  midband  in  the positive  first order, 

sented  here  have  been  found  most  useful  in  investigation of the 
qualitative  and  quantitative  behavior  of  multifrequency  acous- 
tooptic  diffraction  effects. 

Raman-Nath Regime (Q << I )  
The  infinite  coupled  mode  set  for all modes can be solved 

analytically  in  the  Raman-Nath regime  subject to  the  approxi- 
mation: 

Q N  A K L = - -  C n m P m .  
2 m = l  so that 

For modes  in  the  first  order, G = 1, 

This type  of  approximation [ 1 61 underestimates  the wave- 
vector  mismatch  for  high-order  modes (D > 3), and  hence 
leads to  overestimation  of  the  amplitudes  for  these  modes. 
However,  these modes  typically  have  very  small  amplitudes 
and do  not appreciably  affect  the  amplitudes  of  the  principal 
modes,  which are of  primary  interest. 

The  differential  equations  in  this  case  become 

For modes in other  orders, 

The  approximate  forms,  (21)-(23)  apply  provided: 

m = l  

This  holds  for  moderate  fractional  bandwidth Pi << 1 ,  ex- 
cept  for  high-order  modes (D >> l), which typically have  very 
small  amplitudes. As a  result, wavevector  mismatch  may  be 
considered  small  for  modes in the  zeroth  and  first  order: Solution to  (17) can  be obtained  in  the  product  form: 

However,  wavevector  mismatch  in other  orders is large: 
which  converts (17) to  the  form: 

In the following  approximation,  modes  outside  zero  and 
first  order  are  dropped,  and wavevector  mismatch  within the 
zero  and  first  orders is neglected.  The  coupled  mode  equa- 
tions  for  orders  zero  and  one  reduce to  two  sets: 

Equation (19) is a  sum of  expressions  nearly  identical to the 
corresponding single frequency  differential  equation  in  the 
Raman-Nath  regime [ 121 . The equation is satisfied if each 
expression is equal to  zero. This is true  provided: 

where the  superscripted  indicates  the  order  of the  mode. 
One  equation of the  form  (27a) or (27b)  occurs  for  each 

mode  in  the  zeroth  order  or  first  order, respectively.  Com- 
plete  analytic  solution  sets  have  been  found  for N =  2.  The 
solutions  for all modes  and * ! 5 )  and  arbitrary values 
for Vl and V, are  derived  in  Appendix A. 

The  solutions  are  in  the  form of power series 

where Jnm is the Bessel function of integer  order n ,  with  ar- 
gument given in  brackets. 

fraction  solution for the n ,  diffraction  order  due  to signal 
amplitude V ,  when the  (normalized) angle of incidence is 
a(1 + P,). Mode amplitudes  at  the  end  of  the  interaction  are 
obtained with z = L .  

Each grim is identical to  a  single frequency  Raman-Nath  dif- 
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This is an important  reference case for  intermodulation 
intensity. 

Another special  case of interest is zero  amplitude  for  one 

(30) 
signal, e.g., V, = 0. Then, 

[x] denotes  greatest  integer [ 171 not greater  than x 

M & -  r 
2 

( 3 4 4  

M !  l * n , , n 2 1  = 0, otherwise.  (34c) 

cM'n's ' ( (M- Inl- 2s)!(s+Inl)!s!   (32) This  checks  with the well-known single signal solution [ 121 

Mode amplitudes  at  the  end of the  interaction  are  obtained plicable for an arbitrary number of signals N ,  and truncated for  exact Bragg incidence.  The  series  solution  method is ap- 

with z = L .  
series solutions  for N > 2  are  included  in  the  following  section. C M . ~ . ~  is the  number of pathways  for  diffraction  from  mode 

to'mode  in M pairs  of interactions  including: 
(M - In I - 2s) up-conversions  from G = 0 to G = 1 followed 
with  down-conversion  driven  by  the  same  frequency; (s + In I) 
up-conversions  driven  by w f  followed  with  down-conversion 
driven  by W ; ;  and S up-conversions  driven by W; followed 
with  down-conversion  at W:. For negative n,  the roles of W; 
in  this  description  are  interchanged.  The  total  frequency  shift 
is n (wl  - W , )  for  any n.  

Thus  the  number  of  phase-matched  interaction  pathways  has 
a  direct  effect  on  the various  mode  amplitudes. The  chief 
cause for  the  suppression  of  intermodulation  and cross modu- 
lation  effects  in  the Bragg regime compared to  the  Raman- 
Nath regime is the  elimination of pathways  branching  outside 
orders 0 and 1. 

For  the special  case V, = V, = V ,  it can be shown  that  the 
two-signal Bragg regime solutions are equal  to  ordinary 
Bessel functions of argument  Vand  order  equal  to  the  inter- 

111. INTERPRETATION AND RESULTS 
Multifrequency  diffraction  effects  may be quantitatively  de- 

fined  and  related to  the  coupled  mode  amplitudes.  For  con- 
venient  reference,  the  results  cited  are  summarized  in  Tables 
I-IV. Table  I includes  the  analytic  results  for  two  independent 
signals, comparing  the  Raman-Nath regime at  normal  inci- 
dence  with  the B r a g  regime at Bragg incidence.  These  are  the 
most  typical  geometries.  Table I1 gives the  corresponding 
truncated series solutions  which are  applicable  for  small sig- 
nals, I V/2  1' << 1. Table 111 gives the  generalization  of  the 
truncated series solutions  to N > 2, which  are  derived  from 
the  analytic  solution  in  the  Raman-Nath regime  and  separately 
derived  in the Bragg regime.  Table IV gives the  analytic  solu- 
tions  and small  signal approximation  for  two  equal  amplitude 
signals. These  provide the characteristic  two-tone  intermodu- 
lation  spectrum. 

TABLE I 
ANALYTIC RESULTS-TWO SIGSALS 

Symbol 
Raman-Nath  Regime 
a=O Qc<l 

Bragg Regime* 
U=?; Q > 4 n  

~~ 

Diffraction  Efficiency 
I1 9 0  I J ~ ( v ~ ) J ~ ( v ~ ) I ~  

2 
Depletion  d 1 - I J ~ W ~ ) J ~ ( V ~ ! I  

Compression 1 - I ~ ~ J , ( V ~ ) J ~ ( V , )  I '  

Cross Modulation 
2 

. 2  1 - 'Jo(Vr) I 

Intermodulation  (2f  -f 1 
(two-tone  third o r d b ] *  

I 
2.1 IJ2(V1)J1(V2)I 

1 -  * l*l 
IY: .112 

2 
Intermodulation (f,-f,) 
(difference) 

2 ,  
I1,-1 I J I V 1 ) /  IJl(V2)l 

* yn1,n2  given by Equations (28) to (3'2) 
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TABLE 11 
SMALL  SIGNAL RESI:LTS-TWO SIGNALS 

Raman-?lath Regime Bragg  Regime 

Symbol a = 0 Q < < l  3 = Q’4r 

Dlffraction  Efficiency 
I1, 

Depletion 

Compression 

d 

c: 

Cross Modulation 
M1,2 

Intermodulation 
(Two-Tone-Third  Order) I 2 , 1  

Intermodulation ( f , -€ , )  
(difference) 11 ,-l 

Intermodulation  (fl+f2) I 
(Sum1 

1.1 

2 [ ( y 2  + ( y 2 ]  

TABLE 111 
SMALL  SIGNAL  RESULT-N  SIGKALS 

Ramdn-Uath Reglme Bragg Regime 

Characterlstic Symbol 1 = 0  ?<‘l = 2 f  Q > q r  

Diffraction Efficiency Ii dent of the  number of signals: 
The  diffraction  efficiency I j  of  signal 5 is the  intensity of 

the  corresponding  principal  (first-order)  mode in the  first  dif- 
fraction  order 

Ij  G I *(Zj)lZ. (35) However, the  deviation  from  linear  response is more severe  in 
For small  signals  (Tables I1 and 111) diffraction  efficiencies the  Raman-Nath  regime  and  increases  with  the  number of 

are approximately  equal  to  the  normalized drive intensity signals. This deviation is characterized  quantitatively as com- 
(V/2)’ in both the  Raman-Nath  and Bragg regimes, indepen- pression and cross modulation (see below). 
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Cross Modulatlon MI,? 

Intermodulation 
(Two-Tone Third  Order) I ~ ~ - I  

Third  Order  Intercept I = (r)Z = 6 

Theoretical  diffraction  efficiencies  for  two  equal signals  are  peak  value of 0.1 1 5  at V =  1 . 1 .  Experimental  data  correspond 
plotted  in Fig. 4 as a  function of drive intensity ( V / 2 ) 2  for  the to  a Bragg regime glass deflector Q 30. 
Bragg and  Raman-Nath  limits.  The Bragg diffraction  effi- 
ciency  (Table I)  is determined by the  first-order  ordinary Depletion 
Bessel function J1 ( V ) ;  thus it is identical to  the Raman-Nath  ~~~l~~~~~ is the  reduction in intensity of the mode 

0.339 at V =  1.84. This compares  with  a  peak value of 1 at  beams: 
V =  n for  one  signal  in  the Brag  regime. Two-tone  Raman- 

diffraction  efficiency  for  one signal [l21 with  a Peak d u e  Of I + ( 0 ) ( 2  due  to  the  finite  intensities of the  various  diffracted 

Nath  maximum  diffraction  efficiency is further  lowered  to a d A  1 - l q ; ) l 2 .  

1 oo= 1 
, 1 

(37) 

I-' I I 
BRAGG  REGIME  THEORY 0 ,471 

lo-l --- RAMAN  NATH  REGIME  THEORY 0 e l 

0 EXPERIMENTAL  DATA Q:  30 

h l , n  

OF LASER 
INPUT POWER 
(EACH  MODE) 

FRAC%ON 

10-7 10-6 10-5 1 0 4  10-3 10-2 10-1 100. 

1 NORMALIZED  INPUT POWER  (EACH  SIGNAL) 

Fig. 4. Two-signal principal mode intensities (V1 = V2 = V ) .  

:l  10 
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Depletion is one  source  of  the  deviation  from  linear response 
in  the  principal  first-order  modes. In the small  signal approxi- 
mation,  the  depletion is equal  to  the  total  intensity  in  the  prin- 
cipal  first-order  modes.  For given signal amplitudes (K), de- 
pletion is twice as great  in the  Raman-Nath  regime as in the 
Bragg regime  because of  the  simultaneous  generation of posi- 
tive and  negative  first diffraction  order  modes.  The  various 
small  signal  results  (Tables I1 and 111) can  be  used,  provided 
that  the  depletion of the  source  mode is less than 50 percent. 

Compression Ci 

linear  response in the  diffraction  efficiency  of  one signal  due 
to  all signals present: 

Compression is defined  as  the  total  fractional  deviation  from 

The  approximate ’V signal  result is (Table 111): 

cl -[ (:)2 + 2 (:TI, (Raman-Nath) ( 3 9 4  

The  compression  effect is three  times  smaller  in  the B r a g  
regime. Note  that  the  contribution  due  to  other signals is 
double  the  contribution  due  to  self-cornpression. This is as- 
sociated  with  diffraction  into  second-order  intermodulation 
modes in the  zeroth  diffraction  order. The  process of com- 
pression  of  one  signal due to  another signal is called  cross 
modulation. 

100 

NOTES-  (EXPERIMENTAL DATA, 0 * 30) 
1 CW PROBE SIGNAL: ( V ,  12)’ = 0.01 

2 MODULATING SIGNAL M O  Hz 
SOUARE  WAVE A T I ,  = 70MHz 

3 W 1, = M) MHz 

10 

1 

0.1 

0 

PERCENT 
INTENSITY 
MODULATION 
ON PROBE 
SIGNAL , , 

,,,/l ,P’’ 
/ , 

_’ 0 

Cross Modulation Mi,i 
Cross modulation is defined as the  fractional  change  in  the 

diffraction  efficiency of a  signal (vi) due to  the presence of a 
finite  second  signal (g): 

For  small signals, (Tables 11 and 111) the  cross modulation 
due to a signal is twice  its  diffraction  efficiency  in  the  Raman- 
Nath regime, but  only  two-thirds  its  diffraction  efficiency  in 
the Bragg regime. 

Fig. 5 shows  the  theoretical cross modulation  on  a small 
CW signal I V,/2  l* = 0.01 due  to signal V, as a  function  of  the 
intensity of the  second signal I V2/2 1’. Corresponding ex- 
perimental  data  for  the B r a g  regime  were  measured by  apply- 
ing 100 percent  square wave amplitude  modulation (500 Hz) 
to  signal V 2 ,  wlule  measuring  the  percent  intensity  modulation 
on  mode *{l,o). 

Intermodulation 
Intermodulation is the  generation  of  responses  correspond- 

ingto combination  tones of input signals. The  highest inten- 
sity  intermodulation  modes are the  second-order  modes 

fi - 4. The  intensities  are  equal to  the  products of the  corre- 
sponding  principal  diffraction  efficiencies  in  the  Raman-Nath 
regime, but are four  times  lower  in  the Bragg regime.  The 
difference  modes  are  in the  zeroth  diffraction  order (G = 0),  
which  will  not  overlap  the  first-order  provided  input  frequen- 
cies are  restricted to  an octave  band.  Then  difference  modes 
do  not spatially  interfere  with  the  principal  diffraction  modes. 
However,  diffraction  to these  modes is an important  source  of 

*o- - which correspond to  difference  frequencies, e.g., 
I 

,,’ 

__ BRAGG REGIME  THEORY O > 4n 
- _ _ _  RAMAN NATH REGIME THEORY O 1 

NORMALIZED PEAK MODULATINGSIGNAL POWER, 10 LOG (Vz/2I2 
l I I I I 

4 0  -30 -20 -10 0 e10 

Fig. 5. Cross modulation. 
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compression  distortion,  cross  modulation,  and  limited  peak 
diffraction  efficiency  in  the  principal  first-order  modes. 

Sum Frequency 
Modes q?zi-;9, corresponding to  the sum frequency& +h, 

occur  in  the  second  diffraction  order (G = 2).  They are equal 
in  intensity  to  the  corresponding  difference  modes  for  Raman- 
Nath  diffraction.  However,  they are  suppressed  in Bragg dif- 
fraction;  numerical analysis of the  coupled  mode  equations 
(12) is required to evaluate  the amplitudes  in  each  particular 
case.  The  sum  modes  also do  not overlap  the  Principal  modes 
provided input  frequencies are  restricted to an octave  band. 

Third-Order Intermodulation 

I 

Modes  corresponding to  frequencies 2fi - f i  are 
third-order  modes falling in the  first  diffraction  order (G = 1). 
They  interfere  with  the  principal  modes as  spurious  sideband 
responses. In conventional  radio  frequency  analysis  nomencla- 
ture, these  responses are “two-tone  third-order  intermodula- 
tion  products.”  Third-order  intermodulation level  is of  great 
importance in  large dynamic range multifrequency  applica- 
tions  such as spectrum analysis and  optical  information 
processing [ l  I , 131 , [71, [2 11 . 

The Bessel function  intermodulation response in the  Raman- 
Nath  acoustooptic regime  is well known [7]  . The  multifre- 
quency  coupled  mode  solutions  show  that  third-order  inter- 
modulation  intensity is suppressed by  a  factor  of 9 in the 
Bragg regime  (see  Table 111). The  results  of  a  two-tone (V l  = 
V, = V )  intermodulation  experiment  on  a Bragg device  are 
shown in Fig. 6 along  with the Bragg and  Raman-Nath  theo- 
retical  curves  for  principal  modes  and  third-order  intermodula- 

15 

tion  modes.  The  principal  modes  (first-order) have a  slope of 
1 on  the  logarithmic  plot.  The  intermodulation  modes  (third- 
order) have a  slope  of 3. The  spurious  free  dynamic  range is 
about 50 dB  with  diffraction efficiencies of to  
The  background level at is due to  aperture  diffraction 
sidelobes  of  the  source  beam  truncated  by  the  finite device 
aperture. 

Realization  of  the  maximum  spurious  free  dynamic  range 
requires  drive  electronics of excellent  linearity so that  inter- 
modulation signals at  the  input  to  the  acoustooptic device do 
not yield  diffraction  efficiency  in  excess  of  the  intermodula- 
tion levels generated  acoustooptically. A convenient  single 
parameter  linearity  specification is the  intercept-point,  which 
is the  extrapolated  intersection of the  linear  portions of the 
first and  third  order  two-tone responses as shown  in Fig. 6. 
This concept is applicable to  acoustooptic cells as well  as 
electronic  amplifiers [20].  For  maximum  linearity,  the  inter- 
cept  of  the drive  amplifier  should  exceed  the input power 
equivalent to  the  acoustooptic  intercept  point.  ”his ranges 
from ( V / 2 ) 2  = 2 in  the  Raman-Nath regime to  ( V/2)2  = 6 in 
the B r a g  regime. A Bragg cell with 0.1 percent  diffraction 
efficiency at 1 milliwatt  drive level has  a  third-order  intercept 
corresponding to  two signals  of 6 watts  each or +44 dBm  peak 
envelope  power. 

Intermodulation Spectra 

trum for two  equal signals of  intensity  (V/2 >’ = 0.1 is shown 
in Fig. 7.  This  illustrates  the  maximum  spurious response if 
diffraction  efficiencies  are  restricted to below 10 percent. 
B r a g  regime experimental  results are  shown as well  as the 

The  theoretical Bragg regime two-tone  intermodulation  spec- 

RAMAN-NATH 3rd ORDER INTERCEPT 

*:.n1,n2 
FRACTION 
OF LASER 
INPUT POWER 
(EACH  BEAM) 

Fig. 6. Two-tone  third-order  intermodulation. 



16 IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, JANUARY 1977 

f BRAGG  THEORY - R A M A N - N A T H   T H E O R Y  0 BRAGG  EXPERIMENT 
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Fig. 7. Two-tone intermodulation spectrum, Bragg regime, ( V / 2 ) 2  = 0.1. 
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corresponding  theoretical levels in  the  Raman-Nath  limit. All 
spurious responses with  intensities  within 80 dB  of the  source 
mode are shown  for  the 0 and +l  orders. 

The  Raman-Nath  regime  two-tone  intermodulation  spec- 
trum is shown in Fig. 8. All modes  within 70 dB  of  the source 
mode are  shown  for  orders G = - 1 , 0 ,  t 1, t2. Appropriate  no- 
menclature is noted.  The signal levels are ( V/2)2 = 0.1. 

Intennodulation:  Three-Tone  Third-Order 
A less common  standard  for  intermodulation  response is the 

three-tone  third-order  intermodulation level. This is applica- 
ble in the  presence  of  three or  more signals  which  result  in 
modes  of  the  type *(tii t% "ck) including first diffraction 
order  modes *(ii+q -Q. If the  three  strongest  simultaneous 
signals  have  comparable amplitudes,  such  intermodulation 
modes can  be the most  intense  spurious responses  in the first 
diffraction  order.  For  equal  amplitude signals the  intensity 
is four  times  greater (see Table 111) than  the  two-tone  third- 
order  modes.  The  nine-fold  intermodulation  suppression  in 
the Bragg regime  applies to these  modes. 

IV. CONCLUSIONS 
The derived  coupled mode  equations  for  multifrequency 

acoustooptic  diffraction  are  useful  for  the  quantitative  and 
qualitative  analysis  of  various  effects  which  limit the  diffrac- 
tion  efficiency  and  dynamic  range in multifrequency  appli- 
cations. These  include  compression  of  the  diffraction  effi- 
ciency, cross modulation  between  beams,  depletion  of  the 
source  beam,  and  generation  of  various  spurious  intermodula- 
tion  beams,  particularly  the t h i r d a d e r  intermodulation. 

Analytic  solutions  for  the  diffraction  modes are found  for 
N independent signals  in the  Raman-Nath regime limit  (thin 
ultrasonic  gratings)  and  two  independent  signals  in  the Bragg 
regime limit  (thick  ultrasonic gratings). Bragg results  for  small 
amplitudes  can be  generalized to N signals. Various  results, 
including  small  signal  approximation  results,  are  summarized 
in  Tables  I-IV.  The  Raman-Nath  results  are generalized from 
well-known Bessel function  solutions.  The Bragg regime re- 
sults  indicate  that all nonlinear  responses  considered  are sup- 
pressed by  a  factor  of  at  least  two  by  the use of thick gratings. 
This is related to the  suppression  of  interaction  pathways  out- 
side the 0 and  +l  orders.  Source  beam  depletion is reduced  by 
a  factor  of  two,  compression  and cross modulation are  reduced 
by  a  factor  of  three,  and t h i r d a d e r  intermodulation is re- 
duced  by  a  factor of  nine.  This is supported  by  experimental 
measurements  of  the various effects  in good  agreement  with 
the  Brag limit  theory. 

APPENDIX  A 
ANALYTIC  SOLUTION OF THE BRAGG  REGIME 

COUPLED MODE EQUATIONS FOR N =  2 
If  wavevector mismatch is neglected  for  modes  in  ordc. 

G = 0 and G = +l,   the  Bragg regime coupled  mode  equations 
take  the  form: 

d 
d z  * t i  +Crn) 

The  equation  sets  may be decoupled  by  differentiation  and 
cross substitution,  yielding, 

(A2b) 

Initial  conditions  for  the  second-order  equations are ob- 
tained  by  combining  the given conditions  (14)  with  the  first- 
order  equation  (Al). 

Initial Conditions: 

*Ti) = 1, ( E )  = (a) ('433) 

*&) = 0, ( E )  # (0) (-43b) 

*{C) = 0 (A3c) 

d 
d z  
- q j j )  = 0 

d 
d z  n ,  2L 
-*v = - - 9  (D = 1) (-44b) 

d 
d z  
- = 0, (D # 1). 

For N = 2,  (A2a)  takes the  form 

( A 9  
where 

Equation  (A5)  can be solved  by  assuming  ascending  power 
series solutions: 

r = o  

Substituting  the  power series solutions  into  the  differential 
equation  yields  the  recursion  relation: 

4 ~ ' ( r + 2 ) ( r +  U a n ( r + 2 )  + [ G  + G I  anr 

= - VI V2 [a(, -1)r + a(n + l ) r l .  

The  initial  conditions (A3,4) establish  the  first  terms  in  the 
solution series: 
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an, = O ,  In (  > 0 

anl = 0. 

The  remaining terms are found using  the  recursion  relations. 
The  general  expression found  for  the  coefficients is 

where [x] denotes  greatest  integer  not  greater  than x [ 171, 
and 

M S -  
r 
2 

(A12) 

C,w, n ,  is a  combinatorial  expression [ 181 , which gives the 
number of partitions of a  set of size M into subsets  of sizes 
( M -  I n I - 2 s ) , ( s t I n I ) a n d s .  

With series solutions  obtained  for  the  zero-order  modes 
*:,-n, the  first-order  mode  amplitudes * [ n , - n  can be ob- 
tained  by  direct  integration of the  first-order  equations (Alb)  
subject to the  initial  conditions (A3).  The results are 

Mode amplitudes  at  the  end of the  interaction are obtained 
with z = L .  
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