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Abstract

A general method for calculating the scattering amplitude of multifrequency acousto -optic
diffraction is established. The method is based on counting allowable Feynman diagrams. It is found that
the ratio of the number of Feynman diagrams allowable in the Bragg regime (isotropic, birefringent, and
degenerate) to that in the Raman -Nath regime is independent of the total number of different acoustic
frequencies, being a function only of the order of the Feynman diagram and the diffraction order of the
final state. A general expression for this ratio is obtained. With this as a basis, complete
perturbation solutions of the scattering amplitude can be obtained for any final state, any number of
acoustic frequencies, and any kind of multifrequency acousto -optic diffraction. The theory is verified by
comparing with theoretical results obtained previously and with experiment results.

1. Introduction

The theory of multifrequency acousto -optic (AO) diffraction is very important both in practical
applications and in theory. Many sophisticated applications of AO devices are based on multifrequency AO
diffraction, including the multi -channel AO modulators used in laser printers', AO spectrum analyzers2,
and AO devices used for interconnections in optical computing3. The theory of multifrequency AO
diffraction has been incomplete, since the complete solution for the scattering amplitude in
multifrequency AO diffraction has never been obtained for the Bragg regime (including the case of
degenerate birefringent Bragg diffraction). That situation is remedied in this paper.

The theory of multifrequency acousto -optic (AO) diffraction was first investigated by Hecht4, who
derived an analytical solution to the coupled -mode equations in the Raman-Nath regime. For the Bragg
regime case, Hecht obtained a perturbation solution (i.e., a power series solution) for the case of N =
2, N denoting the total number of different acoustic frequencies present. For cases of N > 2, only the
leading term in the perturbation solution was obtained, and that only for some important final states
(i.e., outgoing light beams). However, working only with the leading term is usually insufficient when
the phase shift induced by the AO effect is not small. Korpel and Poon pointed out that the diffraction
efficiency for both Raman-Nath and Bragg diffraction can be obtained through an approach based on Feynman
diagrams, and considered the single- frequency (N = 1) cases. Recently, I. C. Chang pointed out that
the Feynman- diagram method is universal and can be used to obtain the nonlinear responses due to both
multifrequency AO diffraction and nonlinear acoustics6. In his paper he obtains the leading term in the
perturbation solution for the case of two -tone and third order intermodulation.

In this paper, a complete solution for multifrequency AO diffraction with any N value is obtained
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through the Feynman diagram approach. The diffraction can be Raman-Nath (R -N), Bragg (B), axial
birefringent Bragg (AB), or rediffractable birefringent Bragg (RB). The foundation of this approach is
based on counting the number of allowable Feynman diagrams (or allowable paths). In the following these
are denoted by M -N, MB, MAB, and MRB, respectively.

The following three important assertions about the ratios q of MB, MAB, and MRB to MR-N have been
established through numerous drawings and calculations as will be explained below: (1) The ratios q are
independent of the value of N, and thus a general expression for q can be obtained through consideration
of the simplest case N = 1. (2) The dependence of q on the path cluster (a term defined below) is only
through the order P of the path. (3) The dependence of q on the final state is only through the value of
the diffraction order G. That is, all ratios q are functions of P and G on1Ryç not of N. Since all
possible paths in any path cluster are allowable in the Raman -Nath regime, M - can always be obtained
using the knowledge of combinations and permutations. Thus, a complete solution can be obtained for any
kind of multifrequency AO diffraction. In this paper, solutions for some typical final states will be
given: the complete solution will be published elsewhere. The theoretical results are verified by
comparing with the experimental results.

2. Theory

2.1 Analysis of Final States

In single- frequency AO diffraction the outgoing light beams (hereafter referred to as the final
states) can be denoted by a single integer, the diffraction order m; for multifrequency AO diffraction
the final states must be denoted by a string of N integers (ml, m , , m ) _ (m), where N is the total
number of different frequencies involved in the interaction. Any finafstate can be represented by
points with integer coordinates in a N- dimensional space, the state space. The frequency shift of final
state (m) is given by

N
f = E miff. .

f =1
(1)

Consistent with Ref. [4], the diffraction order G and the interaction order D of the final state (m) are
defined by

N

G - E
mf

i=1
N

D = E Imf

i=1

(2)

(3)

As is well known, the leading term in the scattering amplitude of the final state with D is of the order
of (v /2)D, where v is the phase shift induced by the AO effect.

All the independent final states with D s 5 are shown in Fig. 1 for the case of N = 2. The curve
of D = const. is a square with its center at the origin and its four vertices at coordinate axes. The
curve of G = const. is a straight line making an angle of -45° to the coordinate axes. Final states on
both sides of the straight lines G = 0 and ml = m2 are equivalent. Thus, only final states within a
quarter square need be considered. The situation is similar for other values of N. If the order of
approximation desired is Dn, only final states with D s D0 should be considered. Final states with
negative G values are equivarent to those with positive G values and only final states with G >_ 0 need be
considered. Also, final states obtained by all permutations of the same string of integer numbers (m)
are equivalent to each other. For example, the total number of the three -tone third order
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intermodulation states f. + f. - fk is P(N, 3) = N(N - 1)(N - 2); however, only one representative
case - -f1 + f2 - f3, for example- -need be considered.

2.2 Feynman diagram approach of multifrequency AO diffraction

2.2.1 General Idea. In Refs. [4] and [5], the function EG N(z) is derived. We are interested in the
value of this function after the AO interaction is finished. (m'Fhat is, only the so- called scattering
amplitude

tYG(f) = EG(m)(L)

is useful. (Here the frequency shift f as defined by Eq. (1), instead of (m), is used to label the
scattering amplitude in accordance with the custom in multifrequency AO diffraction.) Rather than
calculate EG((m (z) , it is much simpler to obtain the scattering amplitude 'I'-,(f) using the Feynman
diagram approach since in this case the Feynman path integral is only an inegral over the energy-
momentum. Moreover, if only the results for the case when the momentum match condition is fulfilled are
needed (as will usually be the case), then the Feynman path integral can be carried out trivially. The
only task is counting the number M of allowable Feynman diagrams. (It might be noted that the Feynman
diagram was developed originally for obtaining the S- matrix, which gives the scattering amplitude between
any pair of initial and final states before and after the scattering process.8 The situations are thus
quite similar.)

A second simplification in analyzing multifrequency AO diffraction lies in describing the elementary
AO interactions by

cod= co. ±SZi,

kd = ki ± Ki
(4)

This says that only one phonon can be absorbed or released by the incident photon, a condition that is
essential for the establishment of the coupled -wave equation. In this case, any Feynman diagram such as
shown in Fig. 2 can be represented by a path in the N- dimensional state space such as shown in Fig. 3.
The elementary AO interactions of Eq. (4) are represented by

step i: mi =mi+ 1, and M. =M for all j #i,

step i: rí = rhi - 1, and AI. = M. for all j # i ,

(5)

where M. (i = 1, 2, , N) is a set of N variables that change their values according to Eq. (5) during
each step. Its initial value is the initial state (0) and its final value in the final state (m). Thus,
a path is a continuous zigzag line, line segments parallel to the coordinate axes, between the origin (0)
and the final state (m). The number of vertices in any Feynman diagram (or the number of steps in the
corresponding path) is called the order P of the path (or Feynman diagram). As indicated by Eq. (7)
below, the contribution of a Pm-order path to the scattering amplitude is of the order of (v/2) P. It is
easy to see that all possible values of P are

P = D, D + 2, D + 4, (6)
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The upper limit of P is determined by the order of approximation desired. All paths that can be obtained
by permutations of the same string of steps are said to form a path cluster. Figure 3 gives three
examples of path clusters, all between the initial state (0) and the final state (1, 0, 0, , 0): path
cluster {1} with P = 1 containing only one path; path cluster {1, 1, I} with P = 3 containing C(3, 1) = 3
paths; and path cluster {1, 2, 2} with P = 3 containing 3! = 6 paths.

The contribution of each Feynman diagram (or each path) to the scattering amplitude is easy to
obtain if the momentum match condition is fulfilled. Let us consider a Feynman diagram of order P which
consists of ri steps i and si steps i (i = 1, 2, ..., N). Of course, we must have

N N
E (ri + si) =- E P= P.
i=1 i=1

Now, step i is in fact a +1 order AO interaction with the signal Ç. Its contribution to the scattering
amplitude is given by v. /2, where v. is the phase shift induced by the AO effect of the im signal.
Likewise, the step i is al -1 order AO interaction with f., and its contribution is given by -v. /2. By
noting that the total number of permutations of P steps is P!, the contribution to the scattering
amplitude corresponding to this Feynman diagram is easliy shown to be

pi H( 2)ri(- 2)`= pi (-1)( 2)pi.
i=1 i=1

(7)

It should be emphasized that the value given by Eq. (7) depends only on numbers r. and s. of steps and
is independent of the position where each definite step appears. Thus, all paths (alli Feynman diagrams)
that belong to the same path cluster will give the same contribution (7). Multiplying Eq. (7) by the
number M of allowable paths in each path cluster yields the contribution of the whole path cluster.
Adding contributions of all possible path clusters yields the desired scattering amplitude, that is,

N

G(f) _ E q`GlP'(f) _ M pi
H ( ,

P clu i=1
(8)

where the second summation is over all possible P" order path clusters. Thus, in fact, we need not to
know in detail what kinds of paths are contained in each path cluster; only the number M of allowable
paths in each path cluster is important. As soon as the numbers M for all possible path clusters are
determined, the scattering amplitude can easily be obtained by Eq. (8).

2.2.2 Methods of evaluating numbers M and important conclusions. For Raman -Nath diffraction, there is
no restriction on the path shape. That is, at any step of a path, +1 order and -1 order elementapr AO
interactions [Eq. (4)] are always allowable. Thus, in the Raman -Nath regime, the number M -N of
allowable paths in any path cluster is just equal to the number of all possible paths in that path
cluster and can easily be obtained by the knowledge of combinations and permutations. However, for Bragg
diffraction (both isotropic* and non - degenerate birefringent Bragg diffraction) and degenerate
birefringent Bragg diffraction (including axial degenerate birefringent and rediffractable degenerate
birefringent Bragg diffraction as shown in Fig. 4), the restrictions

* In the literature, the rediffractable diffraction named here is called the degenerate diffraction9.
However, since the axial and rediffractable diffraction are all working near the degenerate frequency fd,
it seems more reasonable to retain the name degenerate for both.
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N
O s Cr = t$ s 1 (for B)

i=1
-1 s G s 1 (for AB) ,

0 <_ G <_ 2 (for RB) ,

(9)

due to momentum match condition must always be fulfilled at any step of a paths. Geometrically, an
allowable path in the Bragg regime must lie entirely within the region bounded by two superplanes G = 0
and 1, G = -1 and 1, or G = 0 and 2. There are two methods to evaluate the number of allowable paths in
the Bragg regime: geometrically and by computer. In the geometrical method, we simply draw out all
possible paths in any path cluster and check by inspection which paths lie entirely within the region
bounded by the two superplanes. This method is intuitive, easy to do for the cases N = 1 and 2, and
possible for the case of N = 3. In the computer method, a computer program is designed that generates
all possible paths in sequence and checks Eq. (9) at each step. If Eq. (9) is violated at any step
of a path, this path will be rejected.

Through numerous drawings (the first method) and calculations (the second method), the three
important assertions mentioned in Sect. 1 have been verified for all cases with P s 10. We consider
this sufficient to cover all practical purposes. Moreover, we consider it highly probable that these
assertions are valid universally, even though a rigorous proof has not yet been found. Thus, we believe
that all the ratios

B MB AB MAB RB MRB
q = MR-N , q = ,12-N q = MR-N

NI

for any path cluster and any final states are independent of the value of N and are only dependent on the
value of P and G.

2.2.3 General expressions of ratios q(P, G). Since the ratios q(P, G) are independent of the value of
N, their general expressions can be obtained by considering the simplest case N = 1. The results are as
follows:

qB(P, 0) = gB(2t, 0) = C(2t, t) = Zt! ,

qB(P, 1) = gB(2t+1, 1) = 1 t! (t+1)!
C(2t+ 1, t) (2t+1)!

2t t! t!
(2t)! '

= 2t t! (t+1)!
(2t+1)!

2t 1 t! t!
(2t)! '

= 2t t! (t+1)!
(2t+1)! '

= 2t t! (t+2)!
(2t+2)!

qAB(P, 0) = qAB(2t, 0) =

qAB(P, 1) = gAB(2t+ 1, 1

qRB(P, 0) = qRB(2t, 0) =

qRB(P, 1) = qRB(2t+ 1, 1

qRB(P, 2) = qRB(2t+2, 2
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for any path cluster and any final states are independent of the value of N and are only dependent on the 
value of P and G.

2.2.3 General expressions of ratios q(P, G). Since the ratios q(P, G) are independent of the value of 
N, their general expressions can be obtained by considering the simplest case N = 1. The results are as 
follows:

•Q -Q I +1+1

qB(P, 0) = qB(2t, 0) =

qB(P, 1) = qB(2t+ l, 1) =

AB AB 2* t! t!q (P, 0) = q (2t, 0) =

(10)

qra(P, 0) = qra(2t, 0) =
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The specific values of q(P, G) for P s 10 can easily be calculated from Eq. (10) and are listed in Table
1. They have been verified for all possible cases by the computer method mentioned above and are probably
sufficient for all cases of practical interest. For any path cluster, the number M in the Bragg regime
can be obtained by multiplying the values of q(P, G) by the corresponding numbers MR-N. The scattering
amplitude can be obtained by using Eq. (8); the intensities of outgoing light beams are given by the
squares of the corresponding scattering amplitudes.

Table 1.

P 0
Bragg (B) 1

Axial (AB) 1

Rediff. (RB) 1

P 1

Bragg (B) 1

Axial (AB) 1

Rediff. (RB) 1

P 0
Rediff. (RB) 1

Specific values of q(P, G) with P s 10

Values of q(P, 0)
2 4 6 8

1/2 1/6 1/20 1/70
1 2/3 2/5 8/35
1/2 1/3 1/5 4/35

Values of q(P, 1)
3 5 7

1/3 1/10 1/35
2/3 2/5 8/35
2/3 2/5 8/35

Values
2
1

of q(P, 2)
4 6

1/2 4/15

9
1/126
8/63
8/63

V1 2s+ml V2 2t+m2

s=0t=0 (2s+m1+2t+m2)!

10
1/252
8/63
4/63

8 10
1/7 8 /105

3. Examples of Calculating Scattering Amplitudes and Intensities

3.1 Scattering amplitude in Raman -Nath regime

Let us first consider the case of N = 2. The final state can be expressed generally by (m1, m2).
All possible path clusters are composed of s + m1 steps 1, s steps 1, t + m2 steps 2, and t steps 2 with
P = 2s + m1 + 2t + m2 (s, t = 1, 2, ). The numbers of allowable paths are given by

= C(2s+ml+2t+m2, s)C(s+m1+2t+m2, t)C(s+ml+t+m2, t+ m2)
(25+ml+2t+m2)!

s! (s+ mi)! t! (t+ m2)!

By Eq. (8), the scattering amplitudes are given by

00 00

`1,G(mlfl + m2f2) =E E MR-N
(-1)S+t (

2 2

00 00 (-1)s+t vl 2s+ml v2 2t+m2
- s!(s+ml)!t!(t+m2)! 2 1 2s=0t=0

= Jm1(v1) Jm2(v2) ,
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The specific values of q(P, G) for P =s 10 can easily be calculated from Eq. (10) and are listed in Table 
1. They have been verified for all possible cases by the computer method mentioned above and are probably 
sufficient for all cases of practical interest. For any path cluster, the number M in the Bragg regime 
can be obtained by multiplying the values of q(P, G) by the corresponding numbers M " . The scattering 
amplitude can be obtained by using Eq. (8); the intensities of outgoing light beams are given by the 
squares of the corresponding scattering amplitudes.

Table 1. Specific values of q(P, G) with P < 10

Values of q(P, 0)
P 0 2 4 6 8 10 

Bragg (B) 1 1/2 1/6 1/20 1/70 1/252 
Axial (AB) 1 1 2/3 2/5 8/35 8/63 
Rediff. (RB) 1 1/2 1/3 1/5 4/35 4/63

Values of q(P, 1)
P 13579 

Bragg (B) 1 1/3 1/10 1/35 1/126 
Axial (AB) 1 2/3 2/5 8/35 8/63 
Rediff. (RB) 1 2/3 2/5 8/35 8/63

Values of q(P, 2)
P 0 2 4 6 8 10 

Rediff. (RB) 1 1 1/2 4/15 1/7 8/105

3. Examples of Calculating Scattering Amplitudes and Intensities 

3.1 Scattering amplitude in Raman-Nath regime

Let us first consider the case of N = 2. The final state can be expressed generally by (m., nu). 
All possible path clusters are composed of s + m. steps 1, s steps 1, t + nu steps 2, and t steps 2 with 
P = 2s + m-+ 2t + nu (s, t = 1, 2,    ). The numbers of allowable paths are given by

MR-N ^ c(2s-f mH-2t+m, s)-C(s-hm-t-2t+m, O'CXs+ni + t+m t+

"" s!(s+mi)!t!(t+m2)! ' 

By Eq. (8), the scattering amplitudes are given by

( 1 v"^ 1 VI V?
(mlfl + "29 = 2 2 MR-N (2^j+2F+l^)! (-T-)^1"1^ 

s=0t=0 v -1 z

= Y v (-1)s___ (IL ŝ+mi(^L\^+m2
s=0t=0 s! (s+mi)!t!(t+m2)! ^ 2 > ^2>

SPIE Vol. 936 Advances in Optical Information Processing 111(1988) / 131

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



where the power series expansion of the Bessel function°

oo
(-1)t V )2t+m

J (v)
t=0 t! (t + m)! ( 2 )

is used. Obviously, such a procedure can also be used for the case of any N value, and the scattering
amplitude is given by

N
1IrG(f) = Jmi(vi)

i=1

Equation (11) is exactly the same as those obtained from the coupled-wave equation, but the derivation
is much simpler here.

3.2 Scattering amplitude of three -tone third order intermodulation state

As mentioned above, only a representative f1 + f - f needs to be considered. The final state is
(1, 1, -1, 0, 0, , 0) with G = 1 and D = 3. We ca culaae this scattering amplitude up to P = 5. All
possible path clusters as well as their corresponding values of MR-N, qB(P, 1) from Table 1, and MB =
qB(P, 1)MR -N are all listed in Table 2.

Table 2 All possible path clusters for the intermodulation state f + f - f
and their MR-N, qB(P, 1), and MB values. 1 2 3

P path cluster MR -N
qB(P, 1) MB

3 {1, 2, 3} 3! = 6 1/3 2
5 {1, 1, I, 2, 3} C(5, 2)3! = 60 1 /10 6

{1, 2, 2, 2, 3} C(5, 2).3! = 60 1/10 6
{1, 2, 3, 3, 3} C(5, 2).3! = 60 1/10 6
{1, 2, 3, i, i} 5! = 120 1 /10 12
(i #1,2,3)

By Eq. (8), it is easy to obtain the scattering amplitude as

111(f1 + f2 - f3) _ 1Ir1(3)(f1

1Y1 (3)(f1 + f2 f3) = -
3

1
1Y1(5)(f1 f2 - f3) 20

f2 - f3) + 1Ir1(5) (f1

vl v2

+ f2 - f3)

)

)
(12)

( 2 )

V1
( 2 )3

( 2 )

v2
( 2 )

( 2

V3
( 2

+20( 2)( V2/ V2 2)( 2)( 2)3

+ 10 (2)( 2 )( 2 ).E( 2 )2,
i=4
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where the power series expansion of the Bessel function

00 / i\t
T ( \ = 'V \**' ( _X_ "\2t+m
W ; " ^ t! (t + m)! ^ 2 ' t=0

is used. Obviously, such a procedure can also be used for the case of any N value, and the scattering 
amplitude is given by

N

Equation (11) is exactly the same as those obtained from the coupled-wave equation , but the derivation 
is much simpler here.

3.2 Scattering amplitude of three-tone third order intermodulation state

As mentioned above, only a representative f. + f~ - fo needs to be considered. The final state is 
(1, 1, -1, 0, 0,    , 0) with G = 1 and D = 3. we calculate this scattering amplitude up to P = 5. All 
possible path clusters as well as their corresponding values of MR"N , qB(P, 1) from Table 1, and MB = 
qB(P, 1)MR"N are all listed in Table 2.

Table 2 All possible path clusters for the intermodulation state f 1 + f~ - f~ 
and their MR"N , qB(P, 1), and MB values.

P path cluster MR'N qB(P, 1) MB
3 {1, 2, 3} 3! = 6 1/3 2
5 {1, 1, 1, 2, 3} C(5, 2)-3! = 60 1/10 6

{1, 2, 2, 2, 3} C(5, 2)-3! = 60 1/10 6
{1, 2, 3, 3, 3} C(5, 2)-3! = 60 1/10 6
{1, 2, 3, i, 1} 5! = 120 1/10 12 
(i * 1, 2, 3)

By Eq. (8), it is easy to obtain the scattering amplitude as

(12)

"10" ^ ~2" ^ ~2" ^ ~2~ ^ ^ ̂ ~2~^
i=4
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where the label "B" is omitted for simplicity. Specifically, if all vi are equal, Eq. (12) simplifies
to

If (f. + fj - fk) _ AP1(3)(fi + fj - fk) + T1(5)(fi + fi - fk) ,

qf1(3)(fi + fi - fk) =

P
(5)(f'

f. f- 2N-3 iv N5
1 ( i j k) 20 2

(13)

Since all three -tone third -order intermodulation cases result in the same scattering amplitude when all
v. are equal, the label is changed to the general form f. + f. - ft.k. The scattering amplitude of the
degenerate birefringent Bragg diffraction can be obtained cirecfiy from the result of the Bragg
diffraction. In fact, we have

'YG(P)(f, AB) - gB(P'G ,yG(P)(f, B).

3.3 Scattering amplitude and intensity of zero order state

As a final example, we calculate the scattering amplitude and intensity of the zero order state,
i.e., the state (0) with G = D = O. Of necessity, the perturbation solution of WYn(0) contains the
greatest number of terms. The value of 'AP0(0) is most sensitive to the value of N and its computational
convergence is thus slowest, since all diffracted beams (principal and intermodulated) eventually come
from the zero -order beam. We shall calculate this perturbation solution up to P = 6. All possible path
cluster as well as their corresponding values of M", qB(P, 0) from Table 1, and MB are listed in Table
3. In the table, { } denotes an empty path cluster, its path containing no step (no AO interaction) at
all.

By Eq.

Table 3 All possible path cluster for the zero order state f = 0 and
their MR-N, qB(P, 0), and MB values.

P path cluster MR-N q (P, 1) MB
0 {} C(0, 0) = 1 1 1
2 2! = 2 1/2 1
4 {i, i, 1, i} C(4, 2) = 6 1/6 1

{i, i, j, j} 4! = 24 1/6 4

6 {i, i, i, i, 1, i} C(6, 3) = 20 1/20 1
{i, i, i, i, j, j}
(J # i)

C(6, 2).C(4, 2).2! = 180 1/20 9

{i, i, j, j, j, j}
(j#i)

C(6, 2).C(4, 2).2! = 180 1/20 9

{i, i, j, 3, k, k} 6! = 720 1/20 36
(k #j #i)

(8), the scattering amplitude is given by
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where the label "B" is omitted for simplicity. Specifically, if all v. are equal, Eq. (12) simplifies 
to

T

=

Since all three-tone third-order intermodulation cases result in the same scattering amplitude when all 
v. are equal, the label is changed to the general form f. + f. - fc . The scattering amplitude of the 
degenerate birefringent Bragg diffraction can be obtained directly from the result of the Bragg 
diffraction. In fact, we have

AB /"TJ /*"i \ (pv* ff B) qB(P, G) YG (l ' a) -

3.3 Scattering amplitude and intensity of zero order state

As a final example, we calculate the scattering amplitude and intensity of the zero order state, 
i.e., the state (0) with G = D = 0. Of necessity, the perturbation solution of ^Q(O) contains the 
greatest number of terms. The value of ^0(0) is most sensitive to the value of N and its computational 
convergence is thus slowest, since all diffracted beams (principal and intermodulated) eventually come 
from the zero-order beam. We shall calculate this perturbation solution up to P = 6. All possible path 
cluster as well as their corresponding values of MR" , qB(P, 0) from Table 1, and MB are listed in Table 
3. In the table, { } denotes an empty path cluster, its path containing no step (no AO interaction) at 
all.

Table 3 All possible path cluster for the zero order state f = 0 and 
their MR'N, qB(P, 0), and MB values.

P path cluster MR'N qB(P, 1) MB
0 { } C(0, 0) = 1 11
2 {i, 1} 2! = 2 1/2 1
4 {i, i, T, 1} C(4, 2) = 6 1/6 1

{i, T, j, ]} 4! = 24 1/6 4
(i * i)

6 {i, i, i, T, T, 1} C(6, 3) = 20 1/20 1 
{i, i, T, T, j, j} C(6, 2)-C(4, 2)-2! = 180 1/20 9
(j f i)
{i, I j, j, I, ]} C(6, 2)-C(4, 2)-2! = 180 1/20 9
(j * i)
{i, T, j, ], k, k"} 6! = 720 1/20 36
(k * j * i) 

By Eq. (8), the scattering amplitude is given by
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III 0(0) Alf 0"(o) + 0(2)(0) + Alf 0(4)(o) + Alf 0(6)(0) ,

T0"(0) = 1 ,

N
Y(2)(0) _ (-

1 \ 2 )2 ,

i=1

11/0(4'(o9 = 24(2)a+6 E(2)(2)
i=1i=1 i=1 j=i+1

N v.

720 iE ( 2 )6TO(6)(0) =

N N vi
a

vi
2

N N vi
2

vj a
- gp ( ) ( 2 ) 80, ( 2 ) ( 2 )

i=1 =i+1 i=1 =i+1
N N N

- 20
N. N-, E (2)2( 2 )2(2)2
i=1 j=i+lk=j+1

Specifically, if all vi are equal, Eq. (14) simplifies to

4,0(0) - 1p0(°)(0) + 4f0(2'(0) + 1,0(0(o) +Ip0(6ko) ,

l'0(°)(0) = 1 ,

T0(2)(0) _ - 2 ( 2 )2 ,

To(a)(0) _ 2N2-N v a
24 (2) '

6N3 - 9N2 + 4N v 6
kp 0(6'(0) = 720 ( 2 )

(14)

(15)

In obtaining the last equation, the identity 1.2 + 2.3 + + (N - 2)(N - 1) = N(N - 1)(N -2)/3
(verified by the method of induction ) is used. The intensity of the zero order beam is given by
I''1'o(0)12. We shall only write down here its expression when all vi are equal. By Eq. (15), we get

I0(0) _ I0(°)(0) + I0(2) + I0(4)(0) + I0(6)(0)

I0(°k0) = 0.0(°)(0)f = 1,

I0()0) = 211,0(0)(0)4,0(2V) = -N(1)2 )2 ,

(16)

134 / SPIE Vol 936 Advances in Optical Information Processing III (1988)

_
720 i=

, N N y. V" 1 N N y.

v1 N N N v--Is 2 ? (!)
i=l j=iH-lk=j+l 

Specifically, if all v. are equal, Eq. (14) simplifies to

f

0 24 2 '

(6) 6N3 -9N2 +4N ( v. 6 
V0 w ~ " 720 ^2> •

In obtaining the last equation, the identity 1-2 + 2-3 +     + (N - 2)(N - 1) = N(N - 1)(N -2)/3 
(verified by the method of induction ) is used. The intensity of the zero order beam is given by 
\^Q(0)f. We shall only write down here its expression when all v. are equal. By Eq. (15), we get

IQ(0) . I0(0)(0) + IQ(2) + IQ(4)(0) + IQ(6)(0) ,

I0(0)(0) = ^0(0W = i ,

IQ(2)(0) = 2*0(0)(0)*0(2)(0) = -N(y)2 ,

(16)
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= 0,0(2)(0)12 24,00)(0),F.0(4)(0)

SN2-N v 4
= 12 (2 '

I0(6)(0) = 24/0(2)(0)4'0(4)(0) + 2T0"(0)4/0(6)(0)

-9N3 96N2

A general expression (up to the sixth order of approximation but for any N value) for the depletion d = 1
- IO(0) can immediately be obtained. It has been found that the perturbation solution for intensities
converges much slower than that for scattering amplitude. Thus, if only numerical values (instead of
general expressions) for intensities are needed, it is suggested to calculate them through the square of
the numerical values of the corresponding scattering amplitude.

Although only three examples are considered here, it is obvious that scattering amplitudes and
intensities of any final state and for any N value can be obtained up to any order of approximation
desired by the Feynman diagram approach.

4. Experimental Verification of the Theory

For the verification of the theory, we shall mainly consider the case of N = 2 since the total
number of intermodulation states increases rapidly and to measure them separately becomes rather
difficult. Because we have not written down solutions for all final states in this paper, only results
are given even for the theoretical value.

4.1 Verification of the theory for the Bragg diffraction

As pointed out in Reference [4], for the case of N = 2 and v = v2 = v, an analytical (or rigorous)
solution can be obtained for the scattering amplitude and is given by

4f0(0) = J0(v) , 'I11(fi) = J1(v) ,

'YO(fi - fj) = J2(v) , 1(2fi - fj) = J3(v) ,

q' 0(2i - 2fi) = J4(v) , 'Y1(3fi - 2f]) = J5(v).

On the other hand, for N = 2, Eq. (15) simplifies to

(2)2 +4.(2v)4_
36

(17)

For v/2 = 0.8, the successive values of 'AP (0) calculated from the above equation when more terms are
considered is 1, 0.36, 0.4624, and 0.4551; while the rigorous value is J0(1.6) = 0.4554. Thus, even for
the case of N = 2, the contribution of higher order terms may be important. It is easy to see from Eq.
(15) that the contribution of higher order terms will be more important for larger N values. A more
complete comparison of values of our perturbation solution when different orders of approximation are
considered with the rigorous theoretical value and with the measured value are summarized in Table 3.
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5N2 -N 
12

(6) =I0 (0) =

9N3 - 6N2 + N 
90

A general expression (up to the sixth order of approximation but for any N value) for the depletion d = 1 
- LJO) can immediately be obtained. It has been found that the perturbation solution for intensities 
converges much slower than that for scattering amplitude. Thus, if only numerical values (instead of 
general expressions) for intensities are needed, it is suggested to calculate them through the square of 
the numerical values of the corresponding scattering amplitude.

Although only three examples are considered here, it is obvious that scattering amplitudes and 
intensities of any final state and for any N value can be obtained up to any order of approximation 
desired by the Feynman diagram approach.

4, Experimental Verification of the Theory

For the verification of the theory, we shall mainly consider the case of N = 2 since the total 
number of intermodulation states increases rapidly and to measure them separately becomes rather 
difficult. Because we have not written down solutions for all final states in this paper, only results 
are given even for the theoretical value.

4.1 Verification of the theory for the Bragg diffraction

As pointed out in Reference [4], for the case of N = 2 and V- = v~ = v, an analytical (or rigorous) 
solution can be obtained for the scattering amplitude and is given oy

*(0) - J(v) , M

*<A - V = ¥v> ' *i<2fi - V = J3(v) '
*0(2f. - 2f.) = J4(v) , ^(Sfj - 2i.) = J5(v). 

On the other hand, for N = 2, Eq. (15) simplifies to

Mr ff\\ 1 ( V \2 -L * ( V "* 4 1 ( V \*
V* * l - W + T (y) - 36 ("27 '

For v/2 =0.8, the successive values of M'Q(O) calculated from the above equation when more terms are 
considered is 1, 0.36, 0.4624, and 0.4551; while the rigorous value is ^(1.6) = 0.4554. Thus, even for 
the case of N = 2, the contribution of higher order terms may be important. It is easy to see from Eq. 
(15) that the contribution of higher order terms will be more important for larger N values. A more 
complete comparison of values of our perturbation solution when different orders of approximation are 
considered with the rigorous theoretical value and with the measured value are summarized in Table 3.
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The AO deflector used was a glass device with planar phase array manufactured by IntraAction Corp.

Table 3 Comparison of values of our perturbation solution (up to different orders
of approximation considered) with the rigorous theoretical values

and with the measured value. (v /2 = 0.8)

Final state
I*0(0)12

,2
f`Ir0(f. -f)I
f`Ir0(21fi?2fi)¡2

Order of approximation
0 2 4 6

100% 12.96% 21.38% 20.71%
10.24% 6.34% 6.61%

- 0.0291% 0.0222%
Order of approximation

Final state 1 3 5
rlfl(f.)12 64.0 29.59% 32.64%
ITi(2f. -f.)r

64.00%
- 0.728% 0.514%

11' 1(3fi- 2if)I - - 0.00075%

Rigorous Measured
value value

20.74% 21%
6.60% 2.7%
0.0226% -

Rigorous
value

32.48%
0.526%

0.00071%

Measured
value
34%

0.49%

4.2 Verification of the Theory for the Degenerate Birefringent Bragg Diffraction Case

The AO device used is a deviated but on -axis Teo device designed for a compact Triple- Product-
Processor systeml1. Originally, this device is designed for J.0 = 0.8 µm with f = fd = 92 MHz. When used
at X0 = 0.6328 µm, the measured degenerate frequency is f = 116 MHz. The length of the transducer is 3
mm, which corresponds to Q = 188. For the case orN = 1, the theoretical value of axial and
rediffractable birefringent Bragg diffraction as well as the measured value for v/2 = 0.5 and 0.8 are
summarized in Table 4. Also, for the case of N = 2, the theoretical and measured values for v/2 = 0.5
are summarized in Table 5. All the theoretical values in Tables 4 and 5 are up to the order of P = 5.
The consistency between theory and experiment is good.

Table 4 Comparison of the theoretical and measured values of the axial and rediffractable
birefringent Bragg diffraction for the case of N = 1. (v /2 = 0.5 and 0.8)

v/2 = 0.5

r0)
N112(201

v/2 = 0.8
0

'Pi
2(2f)

Axial Rediffractable
Theoretical Measured Theoretical Measured

57.8% 57.65% 77.8% 78.8%
21.1% 21.1% 21.1% 20.0%

1.44% 1.66%

Axial Rediffractable
Theoretical Measured Theoretical Measured

18.34% 18.34% 51.0% 50.8%
41.0% 40.2% 41.0% 41.14%

8.17% 11.4%

Table 5 Comparison of the theoretical and measured values of the axial and rediffractable
birefringent Bragg diffraction for the case of N = 2. (v /2 = 0.5)

Axial
Theoretical Measured

Rediffractable
Theoretical Measured

31.64% 31.64% 61.0% 60.3%
4.34% 5.67% 1.085% 1.033%

14.85% 14.67% 14.85% 14.85%
0.1485% 0.18% 0.133% 0.127%
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The AO deflector used was a glass device with planar phase array manufactured by IntraAction Corp.

Table 3 Comparison of values of our perturbation solution (up to different orders
of approximation considered) with the rigorous theoretical values

and with the measured value, (v/2 = 0.8)

Final state

Final state

Order of approximation 
0246 

100% 12.96% 21.38% 20.71% 
10.24% 6.34% 6.61% 

0.0291% 0.0222% 
Order of approximation 
135 
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Rigorous 
value 
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Rigorous
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0.526%

0.00071%

Measured 
value
21% 

2.7%

Measured
value
34%

0.49%

4.2 Verification of the Theory for the Degenerate Birefringent Bragg Diffraction Case

The AO device used is a deviated but on-axis TeO~ device designed for a compact Triple-Product- 
Processor system11 . Originally, this device is designed for X~ = 0.8 |xm with f^ = f, = 92 MHz. When used 
at XQ = 0.6328 (xm, the measured degenerate frequency is f, = 116 MHz. The length of the transducer is 3 
mm, which corresponds to Q = 188. For the case orN = 1, the theoretical value of axial and 
rediffractable birefringent Bragg diffraction as well as the measured value for v/2 = 0.5 and 0.8 are 
summarized in Table 4. Also, for the case of N = 2, the theoretical and measured values for v/2 = 0.5 
are summarized in Table 5. All the theoretical values in Tables 4 and 5 are up to the order of P = 5. 
The consistency between theory and experiment is good.

Table 4 Comparison of the theoretical and measured values of the axial and rediffractable 
birefringent Bragg diffraction for the case of N = 1. (v/2 = 0.5 and 0.8)

v/2 = 0.5

v/2 = 0.8

Axial
Theoretical Measured 

57.8% 57.65% 
21.1% 21.1%

Axial
Theoretical Measured 

18.34% 18.34% 
41.0% 40.2%

Rediffractable 
Theoretical Measured 

77.8% 78.8% 
21.1% 20.0% 
1.44% 1.66%

Rediffractable 
Theoretical Measured 

51.0% 50.8% 
41.0% 41.14% 
8.17% 11.4%

Table 5 Comparison of the theoretical and measured values of the axial and rediffractable 
birefringent Bragg diffraction for the case of N = 2. (v/2 = 0.5)

Axial
Theoretical Measured 

31.64% 31.64% 
4.34% 5.67% 
14.85% 14.67%

0.1485% 0.18%

Rediffractable 
Theoretical Measured 

61.0% 60.3% 
1.085% 1.033% 
14.85% 14.85% 
0.133% 0.127%
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5. CONCLUSION

Through numerous drawings and calculations, the important conclusion has been established that the
ratios q are independent of the value of N and are functions of P and G alone. Also, general expressions
for these ratios q have been found. Then the scattering amplitude of any kinds of AO diffraction can
easily be obtained for any final state and any N value through the Feynman diagram approach. The
consistency between theory and experiment is good. Thus, the problem of multifrequency AO diffraction can
be considered as completely solved. The method can be applied to obtain the response due to acoustical
nonlinearities. Until now, only the two -tone and third -order intermodulation case has been considered,
and only the leading term has been obtained.12 The only difference is that the initial state becomes (1,
0, 0, , 0) instead of (0).
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Fig. 1 The structure of final states (N = 2).

ti

(a) (b)

Fig. 2 Examples of the two lowest order (P a= 1 and 3) Feynman diagrams
corresponding to the final state (1, 0) or vd a vi + f1.
(a) The first order P e 1;
(b) One possibility of the third order P = 3;
(c) Another possibility of the third order P = 3.
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Fig. 1 The structure of final states (N « 2).

00 (c)

Fig. 2 Examples of the two lowest order (P « 1 and 3) Feynman diagrams 
corresponding to the final state (1, 0) or v. «  v. 4- t.
(a) The first order P - 1; a i i
(b) One possibility of the third order P - 3;
(c) Another possibility of the third order P « 3.
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Fig. 3 I The equivalent representation of Feynman diagrams by paths.

All possible paths in the two lowest order (P = 1 and 3) path dusters
for the case of N a 2 with the final state (1, 0).
(a) All possible paths in the path duster {1 };
(b) All possible paths in the path cluster (1, 1, T};
(c) All possible paths in the path cluster (1, 2, 2 ).

(a)

(110]

04

Fig. 4 The degenerated birefringent Bragg diffraction
in the on -axis Teo devices.
(a) The axial birefringent Bragg diffraction.
(b) The rediffractable birefringent Bragg diffraction.
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Fig. 3 I The equivalent representation of Feynman diagrams by paths. 
All possible paths in the two lowest order (P - 1 and 3) path dusters 
for the case of N - 2 with the final state (1, 0).
(a) All possible paths in the path duster {!};
(b) All possible paths in the path duster {1, 1, I};
(c) All possible paths in the path duster {1, 2, 2}.

(b)

Fig. 4 The degenerated birefringent Bragg diffraction 
in the on-axis TeCX devices.
(a) The axial birefringent Bragg diffraction.
(b) The rediffractable birefringent Bragg diffraction.
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