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The LIGO and Virgo detectors have been observing the cosmos in search of gravitational waves
(GW) since 2000. All three detectors were upgraded to Advanced versions, which for LIGO began
observing in 2015 and for Virgo in 2017. In Advanced LIGO’s first (12 September 2015 to 19
January 2016) and second (30 November 2016 to 25 August 2017) observing runs (O1 and O2,
respectively), the detectors found 10 GW signals from binary black hole (BBH) mergers, and 1
from a binary neutron star (BNS) merger, all with high significance, or low probability of being
due to instrumental noise fluctuations. Already in the first several months of O3, which began in
April 2019, 2 BNS signals, 15 BBH signals, and 1 NSBH candidate have been seen with such high
significance. These three categories are collectively known as compact binary coalescence (CBC).
In the coming years, as the detectors’ sensitivities are improved, we expect to accumulate tens,
hundreds, or thousands of CBC events. From such large samples, we expect to be able to infer the
underlying population of CBC systems as a function of their masses, component black hole spins,
and redshift. This, in turn, will allow us to better understand the astrophysical processes governing
the formation, evolution, and final fate of such systems, as tracers of the most massive stars. In this
project, we aim to develop tools and techniques to accomplish this through detailed simulation and
Bayesian inference. We report the first three weeks of progress during this project.

I. MOTIVATIONS

A. Measuring binaries with gravitational waves

Gravitational radiation results in the distortion of
spacetime between matter. Thus, when a GW propa-
gates through Earth, it causes a change in the distance
between objects to occur. This quantity is known as
strain, which is observed in the arms of our detectors.
Strain, in terms of what the observer sees, is described
by

h =
∆L

L
, (1)

where L is the original length of the detector arm, and
∆L is the change in that length as induced by a GW.

It is known from general relativity that strain is de-
termined by a binary’s parameters. Strain depends pri-
marily on the intrinsic parameters, mass and spin, which
directly affect the shape of the observed waveform. The
other parameters, which are all observer-dependent, gov-
ern only the strength of the signal. We can thus analyze
the evolution of the waveform’s shape by using Bayesian
inference techniques to determine the chirp massM, and
subsequently the symmetric mass ratio η. The compo-
nent masses are implicit in η [1]:

η =
m1m2

M2
tot

= (
M
Mtot

)
5
3 . (2)

The ultimate goal of this project is to learn about the
universe’s more massive stars, which lead to the forma-
tion of BBH. It is strongly believed that the component
masses of a BBH are related to the masses of its progen-
itor stars. More massive stars, such as those that form
BBH, have lower metallicity and were formed early in
the universe’s timeline (before heavier elements existed).
Younger, higher-metallicity stars have masses too small
to form BBH; as such, it is important to determine the
underlying distribution of the high-mass progenitor stars
so that we may be informed about their evolution into
BBH.

At present, there exist well-supported models of the
star formation rate as a function of redshift (z). These
models are based on observations from electromagnetic
radiation [2, 3]. For BH, we postulate a relation between
BH event rate density R, z, and mass. We describe R,
or the number of events per unit comoving volume per
unit time, as

R =
dN

dVcdts
. (3)

We aim to determine the dependence of R on z, and the
underlying distribution of high masses that accompanies
such a relation. Upon determining the underlying mass
distribution, we are equipped to establish a link between
the stellar mass function and the BBH mass function.

Although there are six parameters used to describe
spin, only two combinations of them dominate in the
phase and amplitude evolution of a gravitational wave-
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form: the effective spin of the orbit, χeff , and the pre-
cessional spin of the orbit, χp. χeff is simply the combi-
nation of the component spins along the binary’s orbital
angular momentum vector [4]. χp, however, governs the
precession of the binary’s orbital plane. These quanti-
ties carry information about the mechanisms by which a
binary was formed, and are described [5] by

χeff =
a1m1cosθ1 + a2m2cosθ2

m1 +m2
, (4)

and

χp = max
(
a1sinθ1, (

4m1 + 3m2

4m2 + 3m1
)(
m1

m2
)a2sinθ2

)
, (5)

where θ1 and θ2 are the angles between the angular mo-
mentum vectors of each component and the binary’s total
angular momentum vector.

Because spin is a higher-order effect in gravitational
waveform evolution, it is more difficult to measure,
whereas mass is of first-order and its range of values can
be more accurately constrained. As such, we will primar-
ily focus on mass for now.

B. Channels of formation

If we are able to determine the underlying distribu-
tion of masses, we are then able to gain valuable insights
into possible methods by which a binary in question was
formed. There are many proposed formation channels,
but two (shown in Fig. 1) that are of particular inter-
est to us [6]. The first main channel is common evo-
lution. In one common evolution sub-channel marked
by a common envelope phase, the BBH evolves via tra-
ditional collapse of both components from a progenitor
stellar binary, within a single cloud of gas. In another
sub-channel, the BBH forms via chemically homogeneous
evolution, in which the orbit of the binary components
does not expand traditionally during main sequence he-
lium production, but rather remains compact [7].

The second main channel is dynamical formation,
which entails the interaction of components formed inde-
pendently of each other. In one such case, a binary sys-
tem interacts with a third body in a dense stellar cluster,
which results in the ejection of the binary’s less massive
component and the capture of the third, more massive
body into the binary. In another dynamical formation
case, one single body captures a second body via the
Bremsstrahlung radiation caused by the acceleration of
the second body through the first body’s gravitational
field. We aim to be able to distinguish between these
formation channels, primarily from mass, then eventu-
ally from spin.

FIG. 1. Formation channels of interest for binary black holes.
The first such channel is common evolution, in which bina-
ries are either formed from common envelope evolution or
chemically-homogeneous evolution. The second such channel
is dynamical formation, in which black holes formed in sepa-
rate environments interact, in either two-body or three-body
interactions.

C. Populations, mass distributions, and mass gaps

Within the mass distribution of CBC events (shown
in Fig. 2), there exist three proposed regions of scarcity
(mass gaps): one below 1 M�, one between∼2-5 M�, and
another between ∼50-150 M�. The latter is proposed to
exist due to pulsational pair-instability supernovae [8],
in which progenitor binary stars with component masses
between 100-150 M� eject a significant amount of their
mass upon going supernova. This theoretically causes the
subsequent BBH component masses to settle around ∼40
M� [9]. We can thus infer truths about this particular
mass gap by determining the underlying mass distribu-
tion of BBH.

FIG. 2. Distribution of NS and BH masses, as detected via
electromagnetic radiation and Advanced LIGO. There are re-
gions of scarcity below 1 M� and between ∼2-5 M�, as well
as a possible mass gap between ∼50-150 M�.
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II. PROJECT

At present, LIGO has catalogued 29 CBC events, 18
of which have been detected solely in the third observing
run. As our detectors improve, the volume of spacetime
in which LIGO is able to observe increases. This quantity
is known as the sensitive spacetime volume

〈V T 〉 =
4

3
πD3

avgT, (6)

where Davg represents LIGO’s sensitive distance and T
represents the observation time of the LIGO detectors
[10]. It is important to note that Davg is a strong func-
tion of mass; systems with a larger overall mass produce
louder GW, and result in a larger Davg. Because 〈V T 〉
is proportional to the sensitivity of our detectors, we are
able to observe larger regions of spacetime as we produce
higher-quality detectors.

As larger regions of spacetime are observed, LIGO is
expected to recover events in larger and larger numbers.
A larger sample size of BBH offers the unique oppor-
tunity to reveal the underlying naturally-occurring dis-
tributions of and relations between BBH masses, spins,
merger rates, and redshift, among other parameters. By
studying populations of BBH, we may better understand
the relationship between the progenitor star initial mass
function and the mass function that governs BBH. We
also stand to uncover information about which forma-
tion channel is more prevalent in nature, as well as the
hyperparameters we would expect each formation chan-
nel to follow. We plan to carry out detailed simulation
and Bayesian inference to do so.

The actual amount of events that we have observed (or
our collected data) is described as N . The true number
of events that occur in nature is described as

N̂true =

∫
dN

dm1dm2dzdts
dm1dm2dzdts. (7)

The component masses m1 and m2, as well as source time
ts and z, can be written as a series of parameters called
~θ. We assume that N̂true depends on m1 and m2, the
distribution of which we will describe by hyperparame-
ters α and β, respectively. We also assume that R has a
dependence on z, which is described by another hyperpa-
rameter γ. Collectively, we denote these hyperparamters
~λ. Spin is also believed to be a dependent of N̂true; how-
ever, we will not address spin at this point in the project.
We can thus rewrite Eqn. (7) as

N̂true =

∫
dN(λ)

d~θ
d~θ, (8)

where

dN(λ)

d~θ
= R(1 + z)γf(m1|α)f(m2|β)

dVc
dz

dtd
dts

1

Td
, (9)

with td being the time as measured at the detector (which
has been dilated with respect to the time at the source),
Td the observation time of the detector, and Vc the co-
moving volume, whose relation to z is determined in ac-
cordance with the ΛCDM cosmological model [11]. From
this, we can construct an expression for the expected
amount of events that we will observe:

N̂det =

∫
dN(λ)

d~θ
E(~θ)d~θ, (10)

where E(~θ) represents the efficiency of detection. Upon
collecting N , we can construct a Poissonian probability
distribution for N such that

P (N |N̂det, λ) =
N̂N
dete

−N̂det

N !
. (11)

However, we are looking to infer what the true, naturally-
occurring number of events is; thus, we step through this
process in the reverse.

To do this, we plan to randomly generate a popula-
tion of masses and propose possible values for the hyper-

parameters enveloped in ~λ. We will develop methodol-

ogy for measuring ~λ using Bayesian inference to compare
how close our experimentally-recovered values are to our
proposed values. In particular, we will use the dynamic
nested sampler dynesty [12] to carry this process out.
Simply put, we will do this in three major steps:

(1) Simulate a dataset consisting of many observed bi-
nary systems, following the distribution outlined in Eqn.

(9) with an arbitrary choice of ~λ.
(2) Use Bayesian inference techniques to recover the

most accurate posterior probability distribution for the

underlying ~λ.
(3) Reconstruct the distribution for N̂true.
This has been attempted by other groups. In [13],

three models were presented for the BBH primary mass
distribution, denoted Models A, B, and C. Model A fixes
mmin to be 5 M�, and allows mmax to vary. Model B
allows both mass limits to vary. Model C allows multiple
functions to describe the distribution; a second compo-
nent of Gaussian nature appears due to the pair insta-
bility in massive progenitor stars. As such, for Model
C, a power law distribution fits at lower masses, and a
Gaussian distribution fits at higher masses. We plan to
use Model C as a starting point for the analysis done in
this project.

III. PROGRESS

Thus far, I have worked on laying the foundations for
beginning the analysis within this project. I have worked
on generating my own distributions and conducting pa-
rameter estimation on them. My warm-up assignment
was to generate a distribution of masses that followed a
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FIG. 3. Differential merger rate distribution for BBH as a
function of primary mass and mass ratio (q) for proposed
Models A, B, and C in [13]. At lower masses, Model C follows
a power law distribution, and at higher masses, it follows
a Gaussian distribution. This distribution is based on data
from O1 and O2 only (10 BBH mergers); we plan to begin
our testing using this model.

power law (in particular, the Salpeter Initial Mass Func-
tion (IMF), N = M−2.35). I did this using 50 randomly-
generated points governed by Gaussian distributions with
standard deviations of 0.002, shown in Fig. 4.

FIG. 4. Results from the initial random generation of masses
following the Salpeter IMF; the red curve is the actual dis-
tribution, whereas the blue curve represents the 50 generated
points and their Poisson errors.

I then used dynesty for parameter estimation, and gen-
erated posterior distributions for both hyperparameters
of the power law, the amplitude and power law slope.
Overall, the true values and the data values were consis-
tent, as shown in Fig. 5.

I then repeated this process using a different method
called the Inverse Transform Method (ITM), which en-

tails using the inverse cumulative density function (CDF)
to sample the original distribution. This is done by gen-
erating numbers selected from a uniform distribution be-
tween 0 and 1, and transforming them into points on the

FIG. 5. Posterior distributions for amplitude and power law
slope as generated by dynesty, along with the parameters’
correlation.

original distribution using the inverse CDF.
Next, I will begin to construct a program which carries

out the first process for a more complicated distribution
of masses, governed by the aforementioned Model C.

IV. CHALLENGES AND FUTURE PROSPECTS

So far, the main sources of my challenges have been
figuring out how to use dynesty and using the ITM. At
first, I had trouble understanding exactly what dynesty
was used for and how it tied into the work I would be
doing. Over the past three weeks, I have been able to
use dynesty to complete the warm-up exercise and have
learned a lot about Bayesian inference, which has aided
in my understanding of dynesty’s use. In regards to the
ITM, I carried out the process both analytically and nu-
merically. I spent a day working on it analytically (and
attempting to solve an unsolvable math problem) before
realizing that I was working with the entirely wrong func-
tion. However, once I was using the correct function, I
was able to complete the exercise with no problems.

In the future, I anticipate having more trouble with
dynesty. I am still learning more about Bayesian infer-
ence and dynesty’s applications, so as I learn more, I hope
it will become easier to use. The first distribution that
we will be analyzing has multiple functions within one
distribution, so I anticipate it will be a challenge to write
the proper code to analyze it, since I have only worked
with simpler functions thus far.
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