BOSEM Noise Analysis

R. Abbott
(v) \Rightarrow must verify \Rightarrow checked

Analysis of BOSEM Performance per "Sensors and Actuators for the Advanced LIGO Mirror Suspensions" Pllo0z08
(v) Per page 4, the BOSEM yields $3 \times 10^{-10} \frac{\mathrm{~m}}{\sqrt{4 z}}$ sensitivity from $0.1 \rightarrow 10 \mathrm{~Hz}$

(V) Per page 6, the mean photocurrent at $\frac{1}{2}$ light is $62.5 \mu \mathrm{~A}$ \rightarrow The PD responsivity is $0.55 \frac{\mathrm{~A}}{\mathrm{~L}}$
Sour at $1 / 2$ light $=\sim 8.5 \mathrm{VDC}$ per figure 6
Transimpedance was $\Rightarrow 160 \mathrm{~K} \Omega \times$ factor of 2 for diff driver $=320 \mathrm{k} \Omega$
Photocurrent $\left(I_{P D}\right)=\frac{8.5 V D C}{320 \mathrm{k} \Omega}=26.6 \mu \mathrm{~A}$ NOT $62.5 \mu \mathrm{~A}$
However the FuLL light photocurrent is $=62.5 \mu \mathrm{~A}=\frac{20 \mathrm{~V}}{320 \Omega}$
Per page 6, measuring range $=\sim 700 \mu \mathrm{~m}$, and the average slope
(1) of Voltage output Vs position is $\sim \frac{20 \mathrm{kV}}{\mathrm{m}} \quad\left(\right.$ actual $\left.\frac{16 \mathrm{v}}{700 \times 10^{-6} \mathrm{~m}}=22 . \frac{9 \mathrm{kV}}{\mathrm{m}}\right)$

Per page 6, the BOSEN noise performance should be limited by
(V) Shot noise at $7 \times 10^{-11} \frac{\mathrm{M}}{\sqrt{H z}}$ for Freq>10Hz. Freq<10HZ, the performance should be limited by /f photo current noise in the LED
(1) $\begin{aligned} \text { Shot noise at } 62.5 \mu \mathrm{~A} & =\sqrt{2 e I_{P D}}=4.47 \mathrm{pA} / \sqrt{1 / 3} \\ \text { Shot noise at } 26.6 \mu \mathrm{~A} & =\sqrt{2 e I_{P D}}=2.92 \mathrm{PA}\end{aligned}$

Shot noise at $26.6 \mu A=\sqrt{2 e I_{P D}}=2.92 \mathrm{pA} / \sqrt{10 z_{1}}$
average slope in terms of current $=\frac{22.9 \times 10^{3} \mathrm{~V}}{\mathrm{~m}} \times \frac{1}{320 \mathrm{~K} \Omega}=7.16 \times 10^{-2} \frac{\mathrm{~A}}{\mathrm{~m}}$
So: $4.47 \frac{p A}{\sqrt{H z}} \times \frac{m}{7.16 \times 10^{-2} \mathrm{~A}}=6.24 \times 10^{-11} \mathrm{~m} / \sqrt{H z}$

$$
2.92 \frac{p A}{\sqrt{1+z}} \times \frac{m}{7.16 \times 10^{-2} \mathrm{~A}}=4.07 \times 10^{-11} \frac{\mathrm{~m}}{\sqrt{1+z}}
$$

Conclusion is that even at full light, shot noise equivalent displacement is $<1 \times 10^{-10} \frac{\mathrm{~m}}{\sqrt{H 3}} @^{10+1 z}$ which is the requirement. This does not yet allow for the other noise terms in the overall sensor (LED Current noise, PDelectronics noise, ADC input noise)

Figure 6. Typical performances of the BOSEMs displacement sensors. Left: response of BOSEM readout as function of position of the flag. Nominal measuring range (red lines), and fit in the linear region (black line) are also shown. Right: displacement sensitivity for a BOSEM unit, measured in-air and in-vacuum. The Advanced LIGO requirements, nominally $3 \times 10^{-10} \mathrm{~m} \mathrm{~Hz}^{-1 / 2}$ at 1 Hz and $1 \times 10^{-10} \mathrm{~m} \mathrm{~Hz}^{-1 / 2}$ at 10 Hz [24], are shown for comparison.

Sensors and Actuators for the Advanced LIGO Mirror Suspensions

Figure 7. Typical performances of the BOSEM production articles. Left panel: displacement noise spectra of ten BOSEM samples, compared with the Advanced LIGO requirement (black line). The spikes between 20 Hz and 50 Hz are mainsrelated pick-up and are artefacts of the measurement system. Central column: some statistics on the reproducibility of the BOSEMs electrical properties for ~ 600 BOSEM articles: inductance (nominal design value 14.7 mH), resistance (37.6Ω) and electrical $Q\left(243 \times 10^{-3}\right)$, to be compared with $\pm 5 \%$ tolerances from the requirements [17]. Right column: distribution of the PD currents measured from ~ 600 units (nominal design value $62.5 \mu \mathrm{~A}$, tolerance $\pm 28 \%$), and some statistics on responsivity and displacement noise at 1 Hz measured for the fully characterised BOSEM units (about $\sim 20 \%$ of the total).

Satellite Box Details (D0901284)

Figure 8. Satellite boxes typical performances. Left, LED current supply (top) and PD readout voltage noise performances (bottom) compared to requirements (black dashed lines). Right, distribution of the LED current (top, tolerance $\pm 5 \%$) and PD amplifier voltage noise at 10 Hz (bottom) measured over ~ 230 Satellite box units (~ 920 channels).

Per page 9, the LED current source produces 35 mA for each LED with $0 . \frac{5 n \mathrm{~A}}{\sqrt{1-3}}$ at 10 Hz corresponding to
$3 \times 10^{-11} \mathrm{~m}$
v) $3 \times 10^{-11} \frac{\mathrm{~m}}{\sqrt{1+z}}$ which should be $\sim 3 x<$ the requirement
(1) verified $I_{L E D}=35 \mathrm{~mA}$
 assume $I_{\text {LED }}$ of 35 mA produces $62.5 \mu \mathrm{~A} \Rightarrow$ Gain $=\frac{62.5 \times 10^{-6}}{35 \times 10^{-3}}=1.79 \times 10^{-3}$ So $0.5 \mathrm{nA} / \sqrt{\mathrm{Hz}}$ becomes $\frac{0.5 \mathrm{nA}}{\sqrt{1+3}} \times 1.79 \times 10^{-3}=8.95 \times 10^{-13} \frac{\mathrm{~A}}{\sqrt{1 / 3}}$
$\underbrace{\text { Which equates to a displacement noise of } 8.95 \times 10^{-13} \mathrm{~A} / \mathrm{r}_{\mathrm{Hz}} \frac{\mathrm{m}}{7.16 \times 10^{-2} \mathrm{~A}}}$
$*$ measured aLIGO unit
current noise to be $0.7 \mathrm{nA} / \sqrt{\mathrm{Hz}}$ @ 10 HZ
S1000276 unit from
Gain of sensor in
S1000276 Unit from 2 HO BOSEM Pedigree unknown

$$
22.86 \mathrm{kV}
$$

$\ddagger 320 \mathrm{k} \Omega^{m}$

Per page 9, the PD amplifier [Transimpedance amplifier signal chain] converts the PD current into a ± 100 signal with intrinsic Voltage noise [interpreted to mean electronics chain dark noise] $<\frac{4 \mu V}{\sqrt{H z}}$ which equates to a displacement noise of $5 \times 10^{-11} \frac{\mathrm{~m}}{\sqrt{H}}$ at $1 \mathrm{OH}_{3}$
: Using the sensor slope of $7.16 \times 10^{-2} \mathrm{~A}, ~ \Rightarrow$
TIA opamp current noise - 0.2 pA $/ \sqrt{1 / z}, 1 / f$ corner $\sim 400+1 z$
Voltage noise $-7.9 \mathrm{nV} / \sqrt{\text { Hz }}$ (negligible)
$160 \mathrm{k} \Omega$ feedback resistor Incise $=0,32 \mathrm{pA} / \sqrt{43}$
Input referred TIA electronics noise $=\sqrt{(0.2)^{2}+(0.32)^{2}}=\sim 0.4 p A / \sqrt{H z}$
Equivalent displacement noise $=\frac{0.4 p \mathrm{~A}}{\sqrt{1+z}} \cdot \frac{\mathrm{~m}}{7.16 \times 10^{-2} \mathrm{~A}}=5.59 \times 10^{-12} \frac{\mathrm{~m}}{\sqrt{H z}}$

- If the shot noise at $62,5 \mu A$ Ipo is included in the electronics noise, the shot noise ($4.47 \mathrm{pA} / \sqrt{H Z}$) will dominate over the TIA noise $(0.4 \rho A / \sqrt{H z})$ and yield an equivalent displacement noise of: $4.47 \times 10^{-12} \frac{\mathrm{~A}}{\sqrt{H z}} \cdot \frac{m}{7.16 \times 10^{-2} \mathrm{~A}}=6.24 \times 10^{-11} \mathrm{~m} / \sqrt{H z}$
- If IPd is taken at $1 / 2$ light, then the equivalent displacement noise is:

$$
2.92 \times 10^{-12} \frac{\mathrm{~A}}{\sqrt{H z}} \cdot \frac{\mathrm{~m}}{7.16 \times 10^{-2} \mathrm{~A}}=4.08 \times 10^{-11} \mathrm{~m} / \sqrt{4 z}
$$

: The quoted $4 \mu \mathrm{~V} / \sqrt{H Z}$ is translated to $\mathrm{m} / \sqrt{\mathrm{HZ}}$ at 10 Hz by knowing the whitening gain @ $10 \mathrm{~Hz}(19) \neq$ the trans $Z(320 \mathrm{k} \Omega) \therefore$

$$
4 \times 10^{-6} \frac{N}{\sqrt{H 3}} \times \frac{A}{320 \times 10^{3} \cdot 19} \not \div \frac{\mathrm{m}}{7.16 \times 10^{-2} \mathrm{~A}}=9.19 \times 10^{-12} \mathrm{~m} / \sqrt{13}
$$

Conclusion: We do not understand how $4 \mu \mathrm{~V} / \sqrt{H_{3}}$ equates to $5 \times 10^{-11} \mathrm{~m} / \sqrt{H_{3}}$

The whitening gain consists of

$$
\begin{aligned}
& \text { Zero }=0.4 \mathrm{~Hz} \\
& \text { Pole }=10 \mathrm{~Hz} \\
& \text { DC Gain }=-1
\end{aligned}
$$

\therefore if one were to use the pole \& zero to calculate the gain at 10 Hz , one would conclude:

$$
\text { Gain@10Hz }=\frac{10}{0.4}=25 \quad \text { Now using this } \Rightarrow
$$

Quoted in note
Output noise quoted as $4 \mu V / \sqrt{1+z}$, $D C$ Gain of sensor $=\sim 20 \times 10^{3} \frac{\mathrm{~V}}{\mathrm{~m}}$
so: $\quad \frac{4 \mu V}{\sqrt{H z}} \cdot \frac{m}{20 \times 10^{3} \mathrm{~V}} \Rightarrow 2 \times 10^{-10} \frac{\mathrm{~m}}{\sqrt{H z}}$
Translating the $1 \mathrm{~Hz} \ddagger 10 \mathrm{~Hz}$ sensing noise specs to equivalent motion For inclusion in a noise budget presented in units of voltage norse: at 1 Hz spec is $3 \times 10^{-10} \mathrm{~m} / \sqrt{\mathrm{Hz}}$

$$
10 \mathrm{~Hz} \quad 1111 \times 10^{-10} \mathrm{~m} / \sqrt{1+z}
$$

The $D C$ gain from motion to output voltage is quoted in P as $\quad 700 \mu \mathrm{~m} \Rightarrow 16 \mathrm{VDC}$ so $\left.\frac{16 \mathrm{VDC}}{700 \mathrm{e}-6 \mathrm{~m}}=22.86 \frac{\mathrm{KV}}{\mathrm{m}} \begin{array}{c}\text { using } 160 \mathrm{k} \Omega \pi \mathrm{A} \\ \text { resistor } \ddagger \text { diff } \mathrm{dr}, \\ \text { gain }=2\end{array}\right)$
A shift from $160 \mathrm{k} \Omega$ to $120 \mathrm{k} \Omega$ for $T, A \Rightarrow$

$$
22.86 \frac{\mathrm{kV}}{\mathrm{~m}} \times \frac{120 \mathrm{k} \Omega}{160 \mathrm{k} \Omega}=17.14 \frac{\mathrm{kV}}{\mathrm{~m}}
$$

So to predict output voltage noise at $1 \mathrm{~Hz} \ddagger 10 \mathrm{~Hz}$ this slope in conjunction With the whitening gain $(2.87 \mathrm{C1Hz}, 19 @ 10 \mathrm{~Hz})$ is given by

$$
\begin{aligned}
& 1 \mathrm{~Hz}^{12^{20 \mathrm{k}}} 3 \times 10^{-10} \frac{\mathrm{~m}}{\sqrt{\mathrm{~Hz}} \times 17.14 \frac{\mathrm{kv}}{\mathrm{~m}} \times 2.87}=1.48 \times 10^{-5} \frac{\mathrm{v}}{\sqrt{\mathrm{~Hz}}} \\
& 1 \times 10^{-10} \times 17.14 \frac{\mathrm{kv}}{\mathrm{~m}} \times 19=3.26 \times 10^{-5} \frac{\mathrm{v}}{\sqrt{\mathrm{~Hz}}}
\end{aligned}
$$

