Sky localization and Gravitational waves alerts

Sarah Antier, CNES, APC, Paris

LSC Open Data Workshop – April 9, 2018 Indico.in2p3.fr/e/gw-odw2

What is multi-messenger astronomy ?

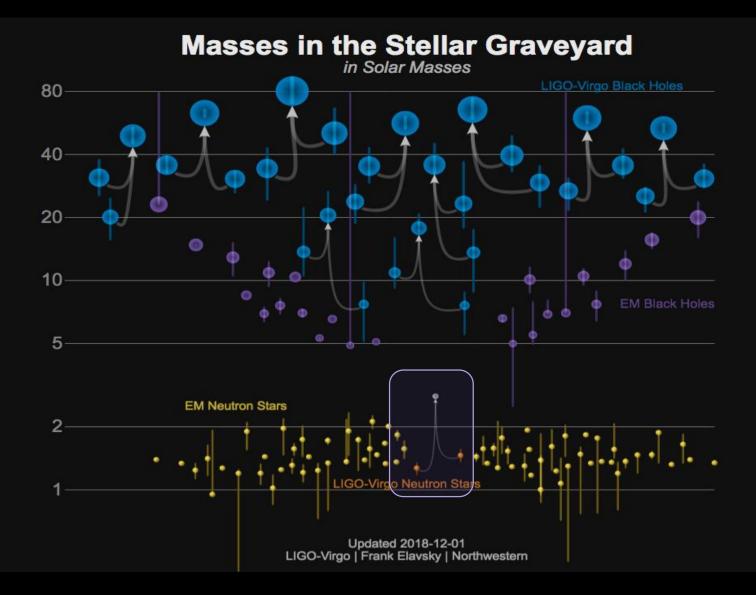
Transient phenomena: shortest times scales (milliseconds to several years)

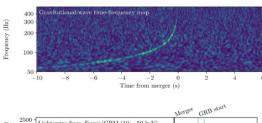
To emit GWs, a source must be compact, relativistic and asymmetric

Merger (NS-NS; NS-BH; BH-BH)

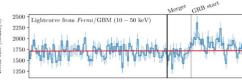
- Short GRBs, Kilonova
- Other cases ? FRB ?

Collapse of a single star


- Type Ib, Ic, II supernovae
- Long GRBs
- Intermediate cases

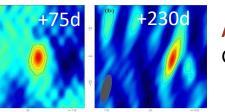


Neutron star instabilities


- Soft Gamma-ray repeaters
- Radio/ Gamma-ray pulsar glitches

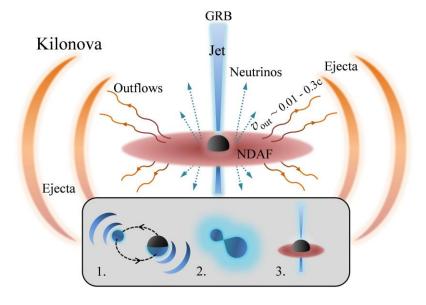
GW170817- a first multi-messenger case

Gravitational wave Initial system

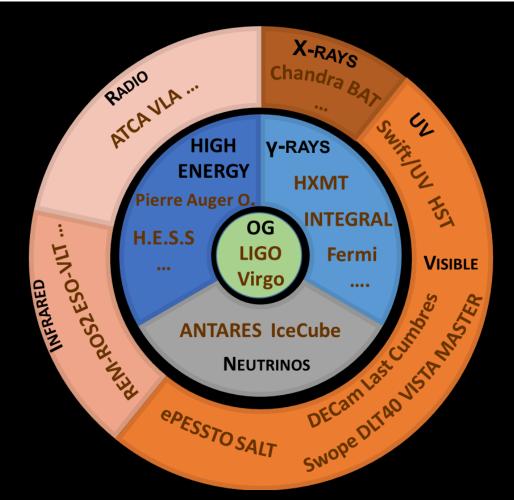

GRB

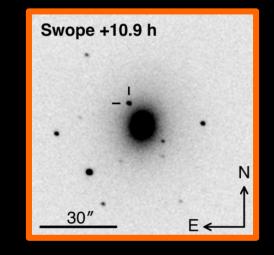
Jet Acceleration mechanisms

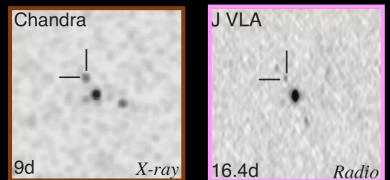
Kilonova


Localization (arcsec) Host galaxy Redshift

Falstve Deciration (max) -10 0 10 10 SS17a




Afterglow


Geometry of the emission

GW170817- Alert sequence

Science impact of gravitational wave science

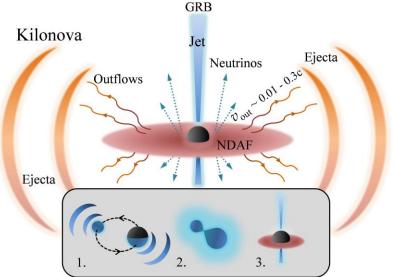
FUNDAMENTAL PHYSICS

Access to dynamic strong field regime, new tests of General Relativity Black hole science: inspiral, merger, ringdown, quasi-normal modes Lorentz-invariance, equivalence principle ...

ELECTROMAGNETIC EJECTA TO GW EVENTS

First observation for binary neutron star merger, relation to sGRB Evidence for a kilonova, explanation for creation of elements heavier than iron

POPULATIONS STUDIES


Start of gravitational wave astronomy, population studies, formation of progenitors, remnant studies Gap between NS and BH

COSMOLOGY

Binary neutron stars can be used as standard "sirens" Dark Matter and Dark Energy, stochastic background

NUCLEAR PHYSICS

Tidal interactions between neutron

Multi-messenger astronomy with LIGO-Virgo

COÏNCIDENCE SEARCH

Compare sets of candidates events

TRIGGERED ANALYSIS

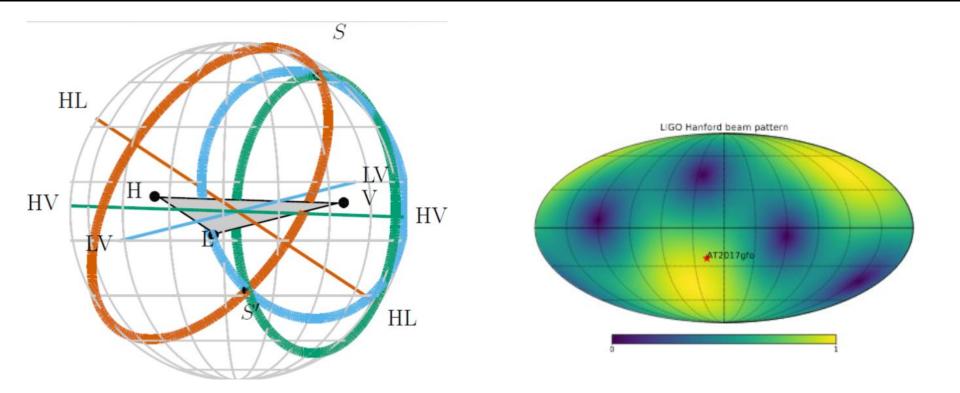
Search that uses EM or neutrino observations to drive the detection of GWs

GRB prompt emission, SN explosion in local galaxies, flares SGR, pulsar glitches, low and high energy neutrino

Known event time and sky position

- \rightarrow reduction in search parameter space for GW searchs
- \rightarrow gain in search sensitivity

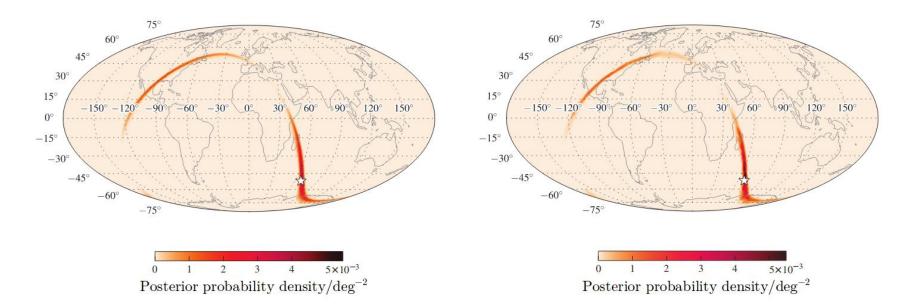
EM FOLLOW-UP


Search EM/neutrino counterpart candidates after GW identification

O2 Electromagnetic campaign

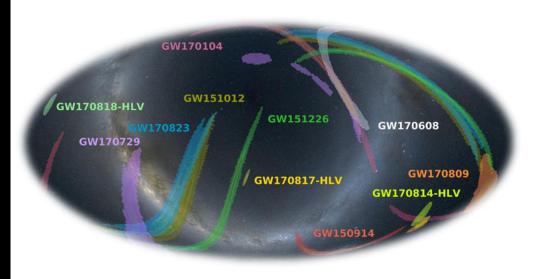
O2 MULTI-MESSENGER GROUP WITH LIGO/VIRGO > 90 MOU SIGNED

- Astronomical institutions, agencies and groups of astronomers from 20 countries
- More than 200 instruments covering the full spectrum (space and ground space telescopes)
- Telescopes in the optical band represented half of the groups

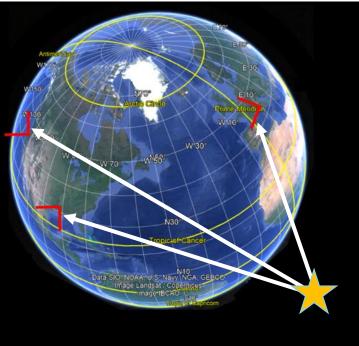

Source localization by timing triangulation for the aLIGO–AdV network

Antenna pattern of Livingston at the time of GW170817

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

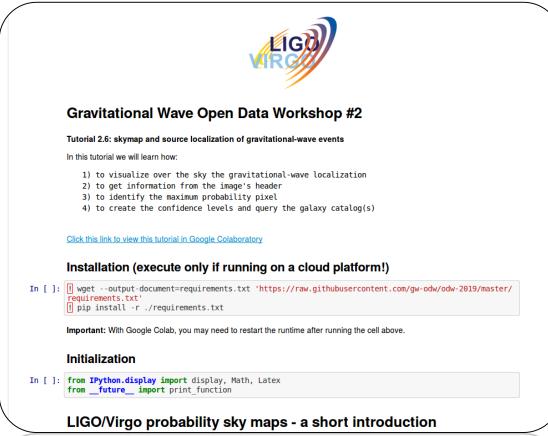

BAYESTAR

LALINFERENCE



Posterior probability density for sky location with a simulated exemple. The source is at a distance of 266 Mpc and has anetwork signal-to-noise ratio of 13.2

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA



14 alerts sent during O2, 6 confirmed ! GW170817 first arrived at Virgo, after 22 ms it arrived at LLO, and another 3 ms later LLH detected it

Virgo allowed source location via triangulation

Low latency gravitational wave alerts for multi-messenger astronomy during the second advances LIGO and Virgo observing runs APJ, 2019

LIGO/Virgo probability sky maps - a short introduction

[]: from IPython.display import display, Math, Late from __future__ import print_function

nitialization

G. Greco Tutorial This afternoon !

- GW170818 : BBH merge
- GW170817: BNS merger

 \rightarrow Reading files

- \rightarrow Parsing info (dist, ...)
- → Calculate 90 c.r region
- \rightarrow Collect info from host galaxy
- \rightarrow And a surprise !

Timeline of the **PUBLIC** alerts

Possible triggers (from the offline analysis) Promoted as follow-up events

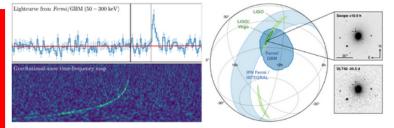
LIGO-Virgo Userguide

Getting Started Checklist →

Navigation

Getting Started Checklist Observing Capabilities Procedures Alert Contents Sample Code

Change Log Glossary


Question? Issues? Feedback?

Email emfollowuserguide@support.ligo.org

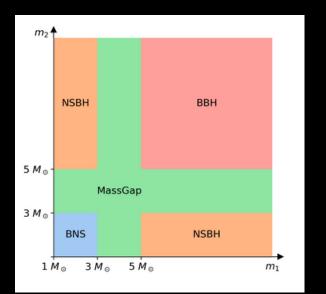
Quick search

Go

Welcome to the LIGO/Virgo Public Alerts User Guide! This document is intended for both professional astronomers and science enthusiasts who are interested in receiving alerts and real-time data products related to gravitational-wave (GW) events.

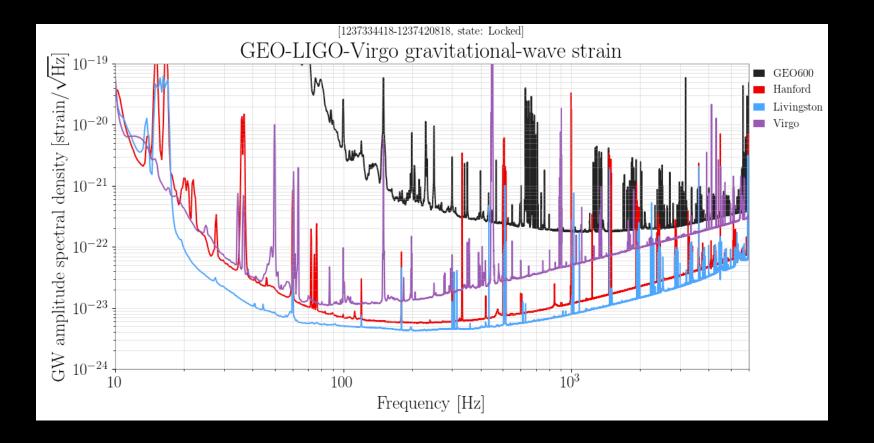
Warning:

Some technical details of LIGO/Virgo public alerts may change before the start of Observing Run 3 (O3) in 2019. In particular, details of the alert format and the <u>GraceDb</u> public portal may evolve. Please check this document regularly for announcements and updates.

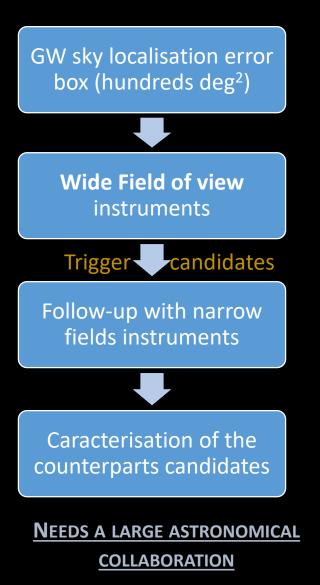

Three sites (LHO, LLO, Virgo) together form a global network of ground-based GW detectors. The LIGO Scientific Collaboration and the Virgo Collaboration jointly analyze the data in real time to detect and localize transients from compact binary mergers and other sources. When a signal candidate is found, an alert is sent to astronomers in order to search for counterparts (electromagnetic waves or neutrinos).

Advanced LIGO and Advanced Virgo are preparing for their third observing run (O3) in early 2019. For the first time, **LIGO/Virgo alerts will be public**. Alerts will be distributed through NASA's Gamma-ray Coordinates Network (<u>GCN</u>). There are two types of alerts: human-readable <u>GCN Circulars</u> and machine-readable <u>GCN Notices</u>. This document provides a brief overview of the procedures for vetting and sending GW alerts, describes their contents and format, and includes instructions and sample code for receiving GCN Notices and decoding GW sky maps.

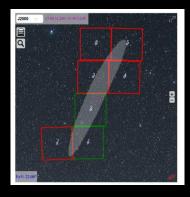
GCN Notices content


Inference: classification Five numbers, summing to unity, giving probability that the source belongs to the following five categories:

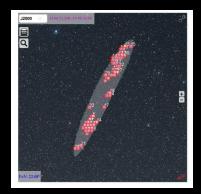
Terrestrial, BNS, MassGap, NSBH, BBH GW150914: 5e-40, 0.00, 0.06, 0.01, 0.93 GW170817: 1e-48, 1.00, 0.00, 0.00, 0.00


Root		
IVORN	<pre>ivo://nasa.gsfc.gcn/LVC#[{T,M}]SYYMMDDabc-{1,2,3}- {Preliminary,Initial,Update,Preliminary-Retraction}</pre>	
Role	{observation,test}	
Who		
Date	Time sent (UTC, ISO-8601), e.g. 2018-11-01T22:34:49	
Author	LIGO Scientific Collaboration and Virgo Collaboration	
WhereWhen	Time of signal (UTC, ISO-8601), e.g. 2018-11-01T22:22:46.654437	
What		
GraceID	GraceDb ID: [{T,M}]SYYMMDDabc. Example: MS181101abc	
Packet Type	GCN Notice type: {Preliminary, Initial, Update}	
Notice Type	Numerical equivalent of GCN Notice type: {150, 151, 152}	
FAR	Estimated false alarm rate in Hz	
Sky Map	URL of HEALPix FITS localization file	
Group	CBC	Burst
Pipeline	{Gstlal,MBTAOnline,PyCBC,SPIIR}	{cWB,oLIB}
CentralFreq	N/A	Central frequency in Hz
Duration		Duration of burst in s
Fluence		Gravitational-wave fluence in erg $\rm cm^{-2}$
BNS, NSBH, BBH, Noise	Probability that the source is a BNS, NSBH, NSBH merger, or terrestrial (i.e., noise) respectively	N/A
HasNS, HasRemnant	Probability, under the assumption that the source is not noise, that at least one of the compact objects was a neutron star, and that the system ejected a nonzero amount of neutron star matter, respectively.	

O3 just starts !!!


Binary Neutron Star range Virgo : 50 MpcHandford: 100 MpcLivingston: 130 MpcA primer on gravitational wave detector with LIGO and Virgo (J.van der Brand)Observation and calibration data quality talk (A.Weinstein)

Identification of the EM/neutrino counterpart



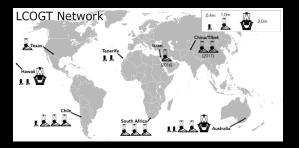
NEEDS SPECIFICS OBSERVATIONAL STRATEGIES

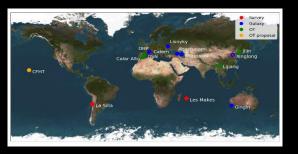
Tiling stategy



Galaxy-targeting (with distance)

Good luck to all counterpart colleagues !





IceCube

Pierre Auger

LCOGT

GROWTH

The future for multi-messengers area is bright !

In the PAST

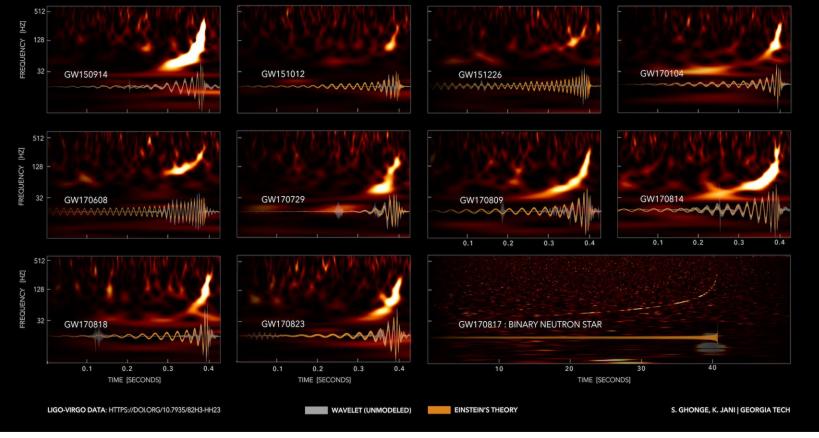
01/02 campaign

In the future: O3 and beyond

BH-BH mergers NS-NS merger Mergers Collapse of massive star Isolated neutrons star instabilities

Populations studies Remanent studies

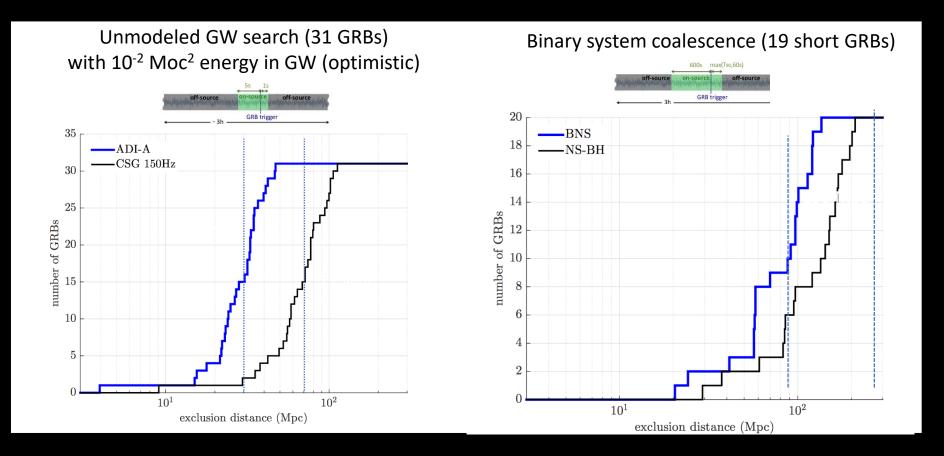
Electromagnetic emissions On different angles Global picture of the Violent Universe



Thanks !

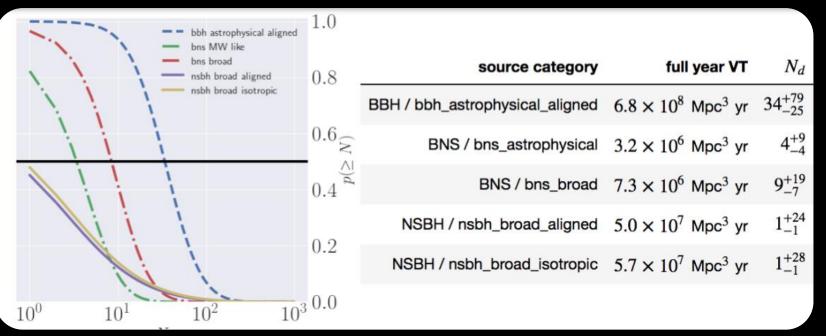
GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

<u>GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by</u> LIGO and Virgo during the First and Second Observing Runs arxiv.org/abs/1811.12907


21

Confident events: FAR < 1 per 30 years, Probability of physical origin greater than 50%

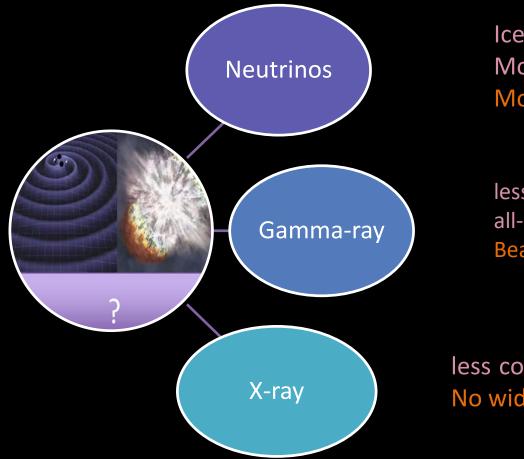
10 BBH + 1 BNS + 14 other marginal events


External triggers and GWs: triggered analysis

GRB prompt emission, SN explosion in local galaxies, flares SGR, pulsar glitches, low and high energy neutrino

Non GW-detection result: lower bounds on the progenitor distance *Abbott et al. 2016, ApJ*,

The O3 multi-messenger campaign

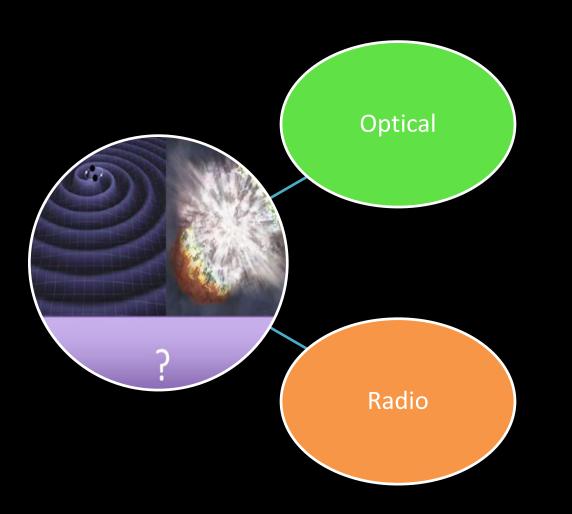


BBH rate will dominate, at least ~few/month up to few/week

1-10 BNS

NS-BH=0 not ruled out in any scenario, most give ~50% N>0 ²³

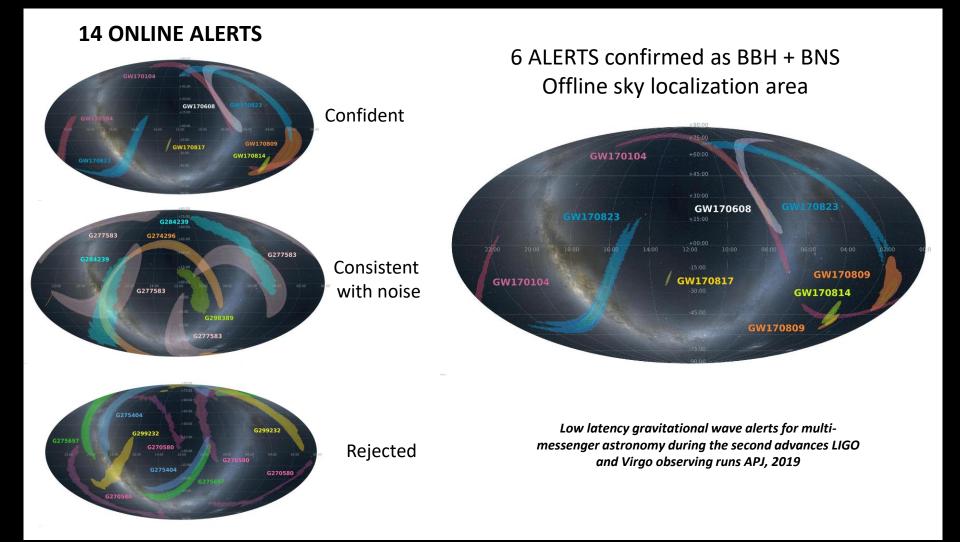
COINCIDENCE SEARCH – EARLY SEARCH



Ice-cube + Antares Monitor the all sky Model dependant

less contaminants all-sky survey Beamed emission

less contaminants No wide-field telescope


TRACK the em/neutrino counterpart of GW ALERTS EARLY SEARCH

Lot of contaminants 10⁴-10⁵ variable objects over 100 sq. degrees Difficult to monitor the whole sky

Less contaminants Wide-field array at low frequencies (MHz) Faint sources Long delay between GW and radio emission

O2 Electromagnetic campaign

