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This story begins 1.3 Billion years ago, 
in a distant galaxy…
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Black Hole #1
36X more massive than the Sun
210 km in diameter 

Black Hole #2
29X more massive than the Sun
170 km in diameter 

Two Black Holes
in Close Orbit
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Then on 14 September 2015, 
at the LIGO sites…
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B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of 
Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016)LIGO-G1900303-v1 CREOL IA Symposium5
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• Einstein (in 1916) recognized gravitational waves in his 
theory of General Relativity
» Necessary consequence of Special Relativity with its finite 

speed for information transfer
» Most distinctive departure from Newtonian theory

• Time-dependent distortions of space-time created by the 
acceleration of masses 
» Propagate away from the 

sources at the speed of light
» Pure transverse waves
» Two orthogonal polarizations

• Requires huge masses and relativistic accelerations 

Gravitational Wave Basics

)/(2 LLh D=

h ~10-21 for plausible astrophysical sources
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• Gravitational wave travelling INTO the plane 
of this slide

• Changes the separations of “free masses”

Effect of Gravitational Wave
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Detecting GWs with Interferometry

2/hLL =D

LIGO-G1900303-v1

Earliest concepts 
show interferometer 
mirrors mounted on a 
“free test mass” 

Weiss, 1972
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Suspended mirrors act as “freely-falling” test 
masses in horizontal plane for frequencies  f >> fpend

For a LIGO detector,
L ~ 4 km, h ~ 10–21

DL ~ 10-18 m

Detecting GWs with Interferometry

2/hLL =D
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Must act like a free mass in GR 

Ultra-high purity fused silica
~35 cm diameter, 40 kg
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Four-stage pendulum 
suspension

Monolithic fused silica 
suspension fibers

Low thermal noise

Low noise actuation
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Core Optics Specifications

Challenging optical requirements:
• ROC match to <1%
• l/1000 surface figure
• < 0.5 ppm absorption
• ~10 ppm scatter
• 0.1 % coating uniformity
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Precision Interferometry = 
Controlling Measurement Noises 

Displacement Noise
• Seismic noise
• Radiation Pressure
•Thermal noise

• Suspensions
• Optics

Sensing Noise 
• Shot Noise
• Residual Gas

Technical Noises:
Hundreds of them…
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Advanced LIGO Detector Sensitivity 
During O1

Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, “GW150914: The Advanced 
LIGO Detectors in the Era of First Discoveries”, Phys. Rev. Lett. 116, 131103 (2016).

Arm Cavity Power Parm = 100 kW
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Displacement Noise
• Seismic noise
• Radiation Pressure
•Thermal noise

• Suspensions
• Optics

Sensing Noise 
• Shot Noise
• Residual Gas

Technical Noises:
Hundreds of 

them…

Optical Challenge for the Future:
Quantum Noise



Two Aspects to Quantum Noise

SHOT NOISE:
Photon counting noise

RADIATION PRESSURE NOISE: 
Noise caused by photon
pressure on mirrors
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Slide courtesy of L. Barsotti
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Standard Quantum Limit

• Trade-off in Power
Between Shot Noise 
and Radiation-
Pressure Noise 

• Standard 
Quantum 
Limit (SQL):
Uncertainty of 
test mass position 
due to Heisenberg
Uncertainty Principle
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Reduce Quantum Noise?

• Quantum noise          RPN        SN

» Make the interferometer longer
» Heavier test masses & more optical power

» Inject of squeezed states of light
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• Quantized Electromagnetic Fields
Quadrature Field Amplitudes

Classical                          Quantum

Heisenberg’s uncertainty 
principle  ∆"#∆"$ ≥ #

Ball and Stick Picture 
of Quantum Optical Noise
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Equivalent to ½ photon



• Interferometer 
arms set to 
interfere the light 
back toward laser—
both the stick and the ball!
-> no shot noise either?

• No such thing as Quantum Noise?

How Does Quantum Noise 
Enter the Measurement?

• Beamsplitter acts
the same on the
stick and the ball!
-> no radiation pressure noise? 
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Quantum Noise in an Interferometer

X1

X2

X1

X2

Laser

Radiation pressure noise
Coherent intracavity field + 
X1 quantum fluctuations
è fluctuating force on mirrors

Shot noise
Coherent signal field + 
X2 quantum fluctuations
è fluctuating amplitude at PD 
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Even when amplitude of 
the field is zero, the noise 
fuzz ball remains
=> “vacuum” fluctuations
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• No quantum constraints individually 
on ΔX1 or ΔX2 , only their product 

• The noise can be redistributed 
while keeping the minimum 
uncertainty product 

ΔX1 ΔX2 ≥1
= Squeezed light
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Squeezing
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Squeezing

• Particularly useful two states

X1

X2

X1

X2

Phase squeezing
(Amplitude anti-squeezing)

Amplitude squeezing
(Phase anti-squeezing)
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Squeezing in an Interferometer
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Simple squeezing gives 
exactly the same effect as 
a change in laser power



Does it Really Work?
Squeezing in Action
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Typical noise without squeezing
Squeezing−enahnced sensitivity

GEO600

LIGO H1

3.5 dB
(1/1.5)

2.1 dB
(1/1.27)

LSC,  Nature Physics 7, 962 (2011)
LSC,  Nature Photonics 7, 613–619 (2013)LIGO-G1900303-v1 CREOL IA Symposium 25



Rotate the squeezing quadrature as a function of frequency

Shot noise

Radiation 
pressure
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Best of Both Worlds?
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Summing Up

• Detection of gravitational waves is already 
giving important new information about the 
Universe on its largest scales

• Made possible by advances in optics and 
precision interferometry

• Future advances will require us to confront 
the quantum nature of measurement
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