J. Feicht Feb 2019
Rev. kernal bt7_LMA_4.8
jfeicht@ligo.caltech.edu

This Mathematica ver. 11.3 notebook generates the beamtube pressure profile
using btwaterleak methodology of particle diffusion. The pressure distribution
is the solution to the set of n-coupled differential equations where “n”
represents the number of beamtube sections. The surface model is the Dubinin-

Radushkevich isotherm.

Options can include the pump arraignments, leaks, temperature profile, etc.
Not all of this functionality is included in this version.

Important note # 1. Any data input or changes you make to defined values
should use floating point notation, for example use “2.0”, or “2.” instead of
symbolic notation “2”. FP notation makes the code run faster because
Mathematica interprets this as a number, not a symbol or exact value. Symbols
can also cause issues with NDSolve, the numerical ODE solver.

Important note # 2. It is always a good idea to quit and restart the kernel after
changing variables. Mathematica has a very long memory, so to reduce your
frustration level and reset it after every run.

Important note # 3. Deleting all code output before saving will greatly reduce
file size. Always do this!

Clear variables and cache. Remember the warning about resetting the kernal.

mn;-;= ClearAll ; (xAlways quit and restart the kernel,
helps prevents strange behavior and crashes from happeningx)

2 | kernal bt7_LMA_4.8.nb

n/-1= ClearSystemCache

ouf-}= ClearSystemCache

Define tube geometry. Note LIGOs 4 km BT’s were baked 150 C in 2 km sections
for ~1 month

nf-1= Tubelength = 100.0 » 100. (x100 meter long beamtube converted to centimeterx)
out-- 10000.

inf-}= Tubediameter = 1.0 % 100 (xnominal 1 meter diameter beamtube converted to centimeterx)

ouf-]= 100.

7 Tubediameter? . . 5
n[-= Tubearea = 5 (»units are centimeter<x)

4.

Define pump speeds.

in[-1= Nopump = 0.0 (xspeed cc/secx*)
(*xuse this or code in 0.0 when temporary pumps are removeds) ;

inf-1= IonpumpS = 500. » 1000. (%500 liter‘/sec ion pump speed converted to cc/secx);
n[-1= MainTurbospeed = 1900. x 1000. (xspeed of main turbos are 1900 l/s, converted to cc/secx);

1= TempCryopumpS = 1000. x 6.5 » 10° ;
(» These are the temporary cryopumps installed during the inital BT bakeout,
the value is their water speed in cc/sec.x*)

n-1= LgIonSpeed = 2500 » 1000. ; (x»these are the large 2500 l/s ion pumps,
speed converted to cc/secx)

n/-1= Turbospeed = 200. » 1000.
(»speed of typical DN10@ flange turbos are 200 l/s, converted to cc/secx);

Define the number of ports (i.e. the number of pumps). The code evenly
distributes the pumps across the length of beamtube you set. LIGO has 17 ports
equally spaced over 4 km.

nf-1= Numberofports = 2 (xneed to have at least 2 ports,
one on each end, this value is also the number of pumps. INTEGER=x)

outf+]= 2

n-1= Portpitch = Tubelength / (Numberofports - 1) (xcentimeters)
out-- 10000.

kernal bt7_LMA_4.8.nb | 3

Automatically populate the pump speeds and locations (comment this section
out if you want to directly input pump speeds).

n-1= Do[Port[i] = {(i-1) # Portpitch,
IonpumpS}, {i, 1, Number‘ofpor‘ts}]; (*#set pump vector and speedsx)

nf-1= Do[Print[Port[i]], {i, 1, Numberofports}];
(»output is a vector reported as the distance from "one end", then "pump speed” x)

(0., 500000.)

{10000., 500000.)

Plot pump speeds (cc/sec) along beamtube.

n-}- portspeedtable = Table[Port[j], {j, 1, Numberofports}];
(»first need to make a table of the indexed ordered pairsx)

n-1= ListPlot [portspeedtable, {Joined - False},
AxesLabel -» {"Distance", "Speed (cc/sec)"}, Filling - Bottom]
Speed (cc/sec)

1x10% [
800000

600000
Outf]=

T

400000

T

200000

T

Distance

" 1 " " " 1 " " " 1 " " " 1 " " " 1
2000 4000 6000 8000 10000

Define starting pressure, temperature and gas amu.

n-}- startpress = 1.0 (*Starting pressure in Torr,
note this is a molecular diffusion flow code,
but btwater starts at 20 Torr. Should we stay out of viscous flow regime?=x);

nf-j= amu = 18. (xwaterx);

imn-1= Tkelvin = 300. (xKelvins) ;

4 | kernal bt7_LMA_4.8.nb

Define physical constants, conversion factors, variables, etc., see btwater3da
for additional information.

m-1= alpha = @.5 ; (xaccomodation coefficient, dimensionlessx)

Inf]:=

Outf«]=

Inf]:=

Out[«]J=

rp =0.7 ; (xpotential height fraction, dimmensionlessx)

sigma@ = 150. ; (xnumber of monolayers at start. Note this variable has changed
definition from earlier versions of wb, waterbake, btwater, so be carefulx)
Tao = 1.0 < 107*2 ; (xmolecule oscillation period in secondsx)

tresmin = 1.0 < 107% ; (xmin residence time in secondsx)

tresmax = 1.0 < 10 ; (xmax residence time in secondsx)

. tresmin .
emtmin = Log[———|; (*log ratiox)
Tao
tresmax
emtmax = Log[——| ;
Tao
. 18.0 . .
vt296 = 5.263 - 10* Sqrt | |5 (+thermal velocity at 296 Kelvin,
amu
in cm/sec. Note multiply by Sqr‘t[Tk:;‘G’i"] to adjust for temperature. Is WRT nitrogenx)
. 296. . .
particlescm3 = — 3.0 < 10°° Ptorr ; (xdensityx)
Tkelvin

particlescm2 = 1.0 ~ 10'° x sigma@ ; (xinitial surface loading;
monolayersxparticles per monolayerx)

tdro = 1.0 < 106* (+the DR peak energy in Kelvinx);

. Tubediameter? [Tkelvin)1/2
pipeconductance = 3.81 * (]

Tubelength amu
(xhandbook formula molec flow conductance for a long round pipe in liter's/second,
used for comparison, setting system time constantx)

1555.43

b belength . / 1000. diter
(Tubearea « Tubelength) » (1. /1)] (s cmx)

timeconstant = IntegerPart|

pipeconductance liter/sec
(*get an estimate of the system time constant %, used this to set how long to run
1ter/sec

DE solver. Typically 1 or 2 time constants is sufficient if using constant ajjx)
50

Set how many sections to break the calculation (beamtube) into, normally use
100 sections, higher values cost solve time.

In[#]:=

Sections = 100 (» this is the INTEGER number of calculation sections that the beamtube
will be broken into, i.e. the number of coupled differential equations to solve,
affects pump placement calc, etc. 100 is a reasonable number,

high numbers increase computation timex) ;

kernal bt7_LMA_4.8.nb

Establish which tube sections have pumps, then map the pump location &
speed to each tube section.

| 5

Inf[]:=

In[«]:=

Out[+]J=

Inf-]:=

Out[«]J=

Inf-]:=

Inf-]:=

Inf]:=

Inf]:=

Inf]:=

Inf+]:=

(*You may ask why we need this section? The reason is because the number of sections
is a user defined variable. Although the position of the pump stays fixed,

the particular section where the placement of pumps,

leaks etc. can change. This piece of code puts the pumps in their correct sectionx)

Tubelength . .
Seclength = ——— (xlength of each "calculation" sectionx)

Sections
100.

Sections (xhow many sections were requestedsx)

100

sectionrange[1] = {1, Interval[{@, Seclength}]}; (xdefines the first sectionx)

sectionrange[Sections] =
{sections, Interval[{(Tubelength - Seclength + .0001), Tubelength}]};
(»defines the last sectionx)

Do[sectionrange[i] = {i, Interval[{((i-1) »Seclength+.0001), (i *Seclength)}]},
{i, 2, Sections-—l}] ; (xDefines the intermediate sections. The 0.0001 is a
(poor) way to stop MemberIntervalQ from duplicating pumps by not allowing
succesive intervals to touch. I've seen a switch in the code that fixes
this but I havent (re)found it yet, so using this lame approach for nowsx)

Table[sectionrange[i], {i, 1, Sections}] ; (xtake a look at the sections and their rangex)

Do[findport[i, n] = Boole[IntervalMemberQ[sectionrange[i][[2]], Port[n][[1]11]],
{n, 1, Numberofports}, {i, 1, Sections}]
(find the section (i) that has the pump port(n)x)

Do[tablel[j] = Table[findport[i, j], {i, 1, Sections}], {j, 1, Numberofports}]
(*intentionally misspelledx)

Check the pump (port) distribution for overlaps. Should return “true” if no
overlaps.

In[«]:=

In[#]:=

Outf«]=

portboole = Sum[tablel[i], {i, 1, Numberofports}] ;
(»make a boolean table of which tube section has the portx)

Total[portboole] == Numberofports
(xthis should return TRUE if the number of ports and the boolean sum are the
same. If FALSE there is a section overlap and a port is being counted twicex)

True

Map the pump speeds to each port. This section includes examples of how to

6 | kernal bt7_LMA_4.8.nb

override or manually introduce values.

1= Speedy [x_] := Nopump » X (*construct a mapping function that multiplies by pump speedx)

Do[g = MapAt [Speedy, portboole, ;;], {n, 1, Sections}];
(»map the speed over the table, recall that ;; is shorthand for Spanx)

n-1- Do[speed[i] = g[[1]], {i, 1, Sections}] (*fyi [[i]] is a compact notation for Part,
it picks out that element in the list. We need these to be individual
values so they can go into the ODE by section. Speed should be in cc/secx)

(#>>>>>>>>> the following will overwrite any earlier speed
definitions so make a choice how you want to do this <<<<<<<<#)

n-;- speed[101] (*check if working correctly, should return a nullsx)

ou-]= speed[101]

speed[100] = Turbospeed (xthis is how to override the mapped speed for a particular port,
in this example port 100 would be set to 200 1/s«)

out[-]- 200000 .

n-1= (*speed[Sections]=500.%1000.*) (xanother example,
this is how to override the mapped speed of port 100 to 500 l/s*)

n/-1= speeds = Table[speed[i], {i, 1
, Sections}] ; (*allows a quick look to be sure it's workingx)

mn-}= ListPlot [speeds, Filling -» Bottom, Joined -» True, PlotLabel - "Pump Distribution”,
AxesLabel » {"Section", "Speed (cc/s)"}] (xspeed plot versus section number in cc/secx)

Pump Distribution
Speed (cc/s)

200000

150000

Out[«]= [
100000 -

50000

v - v v L Section
20 40 60 80 100

kernal bt7_LMA_4.8.nb

Setup beamtube leak(s). This section can be developed further as required. A

similar section with programmed temperature can also be developed, is not
included in this version of the program.

| 7

Do[qlk[i] = ©@.0, {i, 1, Sections}] (*sets the leak rate in each
section. Note that qlk is a variable in the differential equations,
initializes the solver, so do not remove this loop even if there are no
leaks as the varible will not be declared and solver will blow upx)

7= (*qlk[20]= 0.0%1.0 107% (% this shows how to manually introduce a leak. In
this example a value of 1.0 x 107® cc/sec is intoduced in section 20
(change leading © to 1 to turn leak ON or OFF or surround by (* xxx *)). This
can be automated in time, rate, etc. if desiredx) %)

m/-}= Leaks = Table[qlk[i], {i, 1, Sections}];

mn/-1= ListPlot [Leaks, Joined -» True, PlotLabel -» "Leak Distribution”,
AxesLabel -» {"Section", "Speed (cc/s)"}]

(*»makes a leak rate plot versus section number, units are cc/secx)

Leak Distribution
Speed (cc/s)

1.0}

o5

out[]=

- - v - — Section
20 40 60 80 100

10}

Set the number of energy bins and set the initial adsorption site occupation
probability to 1 (i.e. all sites are occupied).

n-1= nsites = 1024 (xset 1024 adsorption sites in the distribution, INTEGER=*) ;

mn-1= Do[ap[n, k] = 1.0, {n, 1, Sections}, {k, 1, nsites}] ;
(*ap is the probablility that a site is occupied. Setting to 1 occupies all
sites. This is the initial condition. Note that 1lx<ns<1Sections, 1x<k<1024 sitesx)
(»this section may be superfluous, gets overwritten when nsnin
and nsmax are defined and site range is resetx)

8 | kernal bt7_LMA_4.8.nb

Set time step size

n-1= timestep = 60. (xseconds*) (*LIGO beamtube has low conductance
and large volume so a very long vol/speed time constant. See DCC docs,
particularly time constant associated with leak testing. Also see O'Hanlon
for a good discussion on leak testing sensitivity vs pump speed,
time constant, pump arraingments, etc.x) (xtimestep is 60 seconds in btwater,
reevaluate for high conductance systemsx) ;

Adsorption surface sites declaration, set range.

. nsites » Tkelvin x emtmin
inf-}- nsmin = Integer‘Par‘t[]

3.0 % tdro

out/-1= 141

;= If[nsmin < 1, nsmin = 17];

mnf-7= nsmin (xcheck the value of nsminx)

out/-1= 141
nsites » Tkelvin » emtmax
Inf-}- nSmax = IntegerPart[]
3.0 « tdro
If[nsmax > nsites, nsmax = nsites];
outf-]= 518

mn-;- Do[ap[n, k] = 0.0, {n, 1, Sections}, {k, nsmin, 1}]; (xdeletes negative sitesx)
Do[ap[n, k] = 0.0, {n, 1, Sections}, {k, nsmax, nsites}]; (xdeletes sites > nsmaxx)
Do[ap[n, k] =0.0, {n, 1, Sections}, {k, 1, nsmin}]; (*1 < deletes sites < nsminx)
(»this may be an error, need to discuss with Raix)
Do[ap[n, k] =1.0, {n, 1, Sections}, {k, nsmin, nsmax}];
(xsets all "useful"” sites in range nsmin to nsmax =1,
is temperature dependent. BTW, I don't think the range distribution

trap was done correctly in btwater >>>> this section needs more review x)

kernal bt7_LMA_4.8.nb | 9

mn-1= ListPlot [Table[ap[1@, k], {k, 1, nsites}], Joined - True,
PlotLabel -» "Activation Energy Site Range Used in Calculation”,
AxesLabel » {"site index", "ap"}]

Activation Energy Site Range Used in Calculation
ap

1.0

outf-j= 08[
04+

0.2

‘200‘ ‘ ‘4(1)0‘ ‘ 660 860 1d00 site index

Set activation energies (Kelvin), normalize and plot the distribution weight
function. Note long tail on distribution. Check normalization by integrating, s/b
=1.

tdro

n-1= deltat = 3.0 ; (xD-R energy site granularity ~30 K «x)

nsites
1= tdr@? (xjust here for checking value, remove laterx)

ouf-]= 1. X 108

nf-}= sum = 0.0; (*initializex);

mn-1= Do[at[k] = k » deltat, {k, 1, nsites}];
(»sets the activation temperature at[k] of site k, units are Kelvinx)

m-1= ListPlot [Table[{k, at[k]}, {k, 1, nsites}],
PlotLabel - "Activation Energy Range", AxeslLabel - {"site index", "Energy (Kelvin)"}]

Activation Energy Range

Energy (Kelvin)

30000

25000

20000
outf+ J=

15000

10000

5000

e e w1 w1 siteindex
200 400 600 800 1000

10 | kernal bt7_LMA_4.8.nb

deltat at[k]
1= Do[W[k] = 2.@ = at[k] * Ex [_(

tdre? tdro
(»see Dubinin-Radushkevich isothermx)

2
J] tk, 1, nsites}]

at[k]

1= ListPlot[Table[{k, Exp[—(y
tdro

2
) 1}, {k, 1, nsites}],

S at[k] ,
AxesLabel » { "site index", "Exp[- (——)2"}]
tdro

2
(xhave a quick look at the Exp[—(%ma]-) termx)
r
at[k]
Expl~(—)?
tdr0
10}
08f
Out[«]J= 0.67

04l

02l

P T SO R L L site index
200 400 600 800 1000

m-;= ListPlot [Table[{k, w[k]}, {k, 1, nsites}], PlotLabel » "Distribution Weight function w([k]",
AxesLabel - {"site index", "w[k]"}] (*plot w[k]=*)

Distribution Weight function w[k]

wik]
0.0025
0.0020
ouf-J- 0.0015}
0.0010 |

0.0005

site index

L 1 L L L 1 L L L 1 L L L L
200 400 600 800 1000
nf-1= Do[sum = sum +w[k], {k, 1, nsites}]

wlk]
sum
(*normalize the weight function. w[k] is dimensionlessx)

1= Dofw[k] = > {k, 1, nsites}] ;

n-;-= energies = Interpolation[Table[{w[k]}, {k, 1, nsites}]];
(xconstruct a interpolating function of w[k]#*)

n-1= Integrate[energies[k], {k, 1, nsites}]
(»integrate the normalized w[k} to check that the area = 1x)

out[-]= ©.999992

kernal bt7_LMA_4.8.nb

Set the initial adsorption site occupation probability to 1 (i.e. all sites are
occupied).

| 11

m-1= Do[ap[n, k] = 1.0, {n, 1, Sections}, {k, 1, nsites}] ;
(xap is the probablility that a site is occupied. Setting to 1 occupies all
sites. This is the initial condition. Note that 1lx<n<1Sections, 1x<k<1024 sitesx)

Define the p[t] differential equation coefficients.

Tkelvin .
nf-]= V = vt296 *Sqr't[—] 5 (¥molecular speed adjustment for temperature,
296.

wrt N2, units are cm/secx)

2. *V * .5 Tubediameter . m cm 1
In[-]}= aa = 5 (# units are —%—=—"x%)

3. Seclength? sec cm? sec
4, .)
bb = ———————— ; (» units are x)
Tubediameter cm
1.0 . .
dd = 5 (% units are --x)

7 (.5 Tubediameter) 2 seclength

nf-}= aa (xreview the valuesx)
bb
dd

ou-j= 176 .615
out-- 0.04

our-1- 1.27324 x 107

Set initial pressure in each section. Startpress defined previously.

n-;- Do[ystart[n] = startpress, {n, 1, Sections}]
(»sets initial pressure in all sections, units are Torrx)

12 | kernal bt7_LMA_4.8.nb

Determine the outgassing rate in each section. This rate then gets pushed to
the differential equation solver to compute the system pressure.

Uses updates in ystart[n] to calculate desorption probability. Follows
methodology of probev subroutine in btwaterlk3da .

nf-1= probev[] := Module [{sumb, suma, rt, tg, tt, temit, tads, tau, pequil, ax, j, n},
(»timestep=ts, which is similar to btwaterx)
Do [sumb = @;
suma = 0;
Do[sumb = sumb + ap[n, k] »w[k] (*w[k] is the normalization factorsx);

at[k] . .
rt = ——— (*rt is the ratio of at[k],
Tkelvin

the activation temperature of the site, to the surface abs temp, dimensionlessx) ;
tg=rt (1.0-rp);

(xrp is the repulsive potential ratio, set to 0.7 currently, dimensionlessx)

tt = (1.0+tg) Exp[-tgl;

temit = Tao x Exp[rt] (»this is the emission time, secondsx) ;

4.0 x sigma@ . . .
tads = (xtads is the (re)adsorption time,

(30.0 » alpha » ystart[n] v « tt)

with sigma@ the inital monolayers and alpha is the accom. coeff.,
v=molec speed, ystart is the pressure in each section, dims are seconds =*);

temit » tads . .
tau = —— ; (*dimensions are secondsx)

temit + tads

. temit . .
pequil = —— ; (xdimensions are secondsx)

temit + tads
If[tads <@.0 || tads > 1.0 < 18'%, {tau = temit, pequil = 0.0} |;

—timestep] .
tau ’

ap[n, k] = ap[n, k] * ax + pequil * (1.0 - ax) ;
If[ap[n, k] > 1.0, ap[n, k] =1.0];

(*ap is the probability that a site is occupiedx)
If[ap[n, k] < 0.0, ap[n, k] =0.0];

suma = suma + ap[n, k] *w[k], {k, nsmin, nsmax}];
sigmao

ax = Exp|[

ajjn = (sumb - suma) = (xoutgassing rate/section,

30.0 x timestep
converts monolayer‘/sec to torr-cc/sec cm?x), {n, 1, Sections}];
Return[{ax, suma, sumb, pequil, rt, tg, temit, tads, tau, timestep, tau, ajj,}]

|

Determine the pressure distribution in the beamtube by using the most current ajj
(outgassing rates) and the last pressure distribution. These values populate the
differential equation solver which computes the new system pressure/section, i.e.
the new ystart[n]. The iteration rate is timestep. The new ystart[n] are evaluated

kernal bt7_LMA_4.8.nb | 13

by the probev module and the outgassing rates are updated, etc. The calculation
continues until the desired run time is reached.

nf-1= Do[@ajjn = 0.0, {n, 1, Sections}] ; (xinitialize ajj to zero/section,
as ajj will be evaluated by probev module. Keep in mind the
comment in btwater3da note says this is inconsistent with later revsx)

14 | kernal bt7_LMA_4.8.nb

In[«]:=
calcpressdist[time_] := Module[{currenttime = time}, probev[];

sectionrates = Table[ajj,, {n, 1, Sections}] ;
(» these are the new ajj that get fed back into the calculationx)

diffeqns = Table[{pi.1'[t] ==
aa (ps[t] +Ppi2[t] -2.0ps.a[t]) +bbajjs.s +dd (qlk[i+1] - speed[i +1] ps.a[t]),
pi.1[@] = ystart[i+1]}, {i, 1, Sections -2}] ;
(»this generates the ODE's for sections n+1 to n-1 of the n beam tube sectionsx)

Do [If[px < 0.0 || px.1 < 0.0, pc'[t] =0], {k, 3, Sections -3}];

firstsection = {p1 "[t] ==
aa (p2[t] - ps[t]) +bbajjs +dd (qlk[1] - speed[1] xps[t]), p1[@] == ystart[1]};
(»this generates the ODE for section 1 of the n beam tube sectionsx)

If[p1<0.0||p2<9.0, p1'[t] =0]; (*1st sectionx)

lastsection = {pSections ' [t] == da (pSections—l [t] = Psections [t]) +bb ajjSec‘tions +
dd (qlk[Sections] - speed[Sections] psections [t]1)s Psections [@] == ystart[Sections]} ;
(»this generates the ODE for the last section of the n beam tube sectionsx)

If[psections-1 < 0.0 | | Psections < 0.0, Psections ' [t] =0]; (*last sectionx)
temp = Prepend [diffeqns, firstsection]; (» add the first sections to ODE listx)

diffeqns = Append[temp, lastsection];
(» add a the last sections, this completes the ODE listx)

vars2 = Table[p;[t], {j, 1, Sections}]; (xdefine the variablesx)

btw = NDSolve [diffeqns, vars2, {t, 1, timestep}];
(xsolve the equation, code picks optimum solverx)

secpresvstime = Table[vars2 /. First[btw], {t, 1, timestep}];
(»these are the solutions, this can be a really big file,

it contains a value for every time set from 1 to timestep,

for each section (typically 100 sections)«)

Do[ystart[j] = Last[secpresvstime] [[j]], {j, 1, Sections}];

(»these are the new pressure values for use in the iterationx)

data[currenttime] = Table[ystart[j], {j, 1, Sections}]
(»these data are the pressure in each section for each timestepx)

Set calculation loop time or number of cycle iterations

kernal bt7_LMA_4.8.nb

| 15

In[«]:=

Outf«]=

In[«]:=

Outf«]=

In[«]:=

SetSystemOptions ["CheckMachineUnderflow" - False]

(*may be perilous to do this but I'm tired of small numbers warnings. Solution is
to rewrite this code using arbitrary precision numbers rather than machine
precision numbers. NOTE CheckMachineUnderflow only works with Mathematica revison
11.3 or higher. Set - True to see warnings or - False to suppress warningssx)

CheckMachineUnderflow —» False

tmax = 100 000
100 000

Do[calcpressdist[time], {time, 1, tmax}] (*set time range,
call the solve pressure distribution Modulex)

Take a look at ODE that is being solved

In[«]:=

diffeqns; (*remove semicolon to see the differential equations with coefficientsx)

Plot pressure distribution, outgassing rates, etc.

In[«]:=

Outf«]J=

lastpressure = Table[ystart[j], {j, 1, Sections}]
(»get the set of pressure values in each section at time=tmax, units are Torrx)

{2.04811x 1077, 2.04808 x 1877, 2.04803 x 107, 2.04794 x 10/, 2.04783 x 107, 2.0477 x 107,
.04753 x 1077, 2.04734 x 1077, 2.04712x 1077, 2.04687 x 1077, 2.04659x 1077, 2.04629 x 107,
.04596 x 1077, 2.0456 x 1077, 2.04521 x 1077, 2.0448 x 1077, 2.04436 x 1077, 2.04389 x 1077,
.04339x 1077, 2.04287 x1077, 2.04232x 1077, 2.04174x 1077, 2.04113x 1077, 2.0405 x 107/,
.03983x 1077, 2.03914 x 1077, 2.03843x 1077, 2.03768x 1077, 2.03691 x 1077, 2.03611x 1077,
.03528 x 1077, 2.03443 x 1077, 2.03355x 1077, 2.03263x 1077, 2.0317 x107/, 2.03073 x 1077,
.02974 x 1077, 2.02872x 1077, 2.02767 x 1077, 2.02659x 1077, 2.02549 x 1077,

.02436 x 1077, 2.0232x 1077, 2.02202x 1077, 2.0208 x 1077, 2.01956 x 107, 2.01829 x 107/,
.017x 1077, 2.01567 x 1077, 2.01432x 1077, 2.01294x 1077, 2.01154x 1077, 2.0101 x 1077,
.00864 x 1077, 2.00715 x 1077, 2.00563 x 1077, 2.00409 x 1077, 2.00252 x 1077, 2.00092 x 1077,
.99929x 1077, 1.99764 x 1077, 1.99595 x 1077, 1.99424 x 107, 1.99251x 107, 1.99074 x 1077,
.98895x 107, 1.98713x 107, 1.98528 x 107, 1.98341x 1077, 1.9815x 1077, 1.97957 x 1077,
.97762x 1077, 1.97563 x 1077, 1.97362x 1077, 1.97158 x 107, 1.96951x 1077, 1.96741x 1077,
.96529 x 1077, 1.96314 x 1077, 1.96096 x 107, 1.95876 x 1077, 1.95652 x 1077, 1.95426 x 107,
.95197 x 1077, 1.94966 x 1077, 1.94732x 1077, 1.94494 x 107, 1.94255 x 107, 1.94012 x 1077,
.93767 x1077, 1.93519x 1077, 1.93268 x 1077, 1.93014 x 1077, 1.92758 x 10"/, 1.92499 x 1077/,
.92237 %1077, 1.91972x 1077, 1.91705 x 1077, 1.91435x 107, 1.91162 x 1@*7}

R R R RRPRRPRRNNNNNMNNNNN

2 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1

16 | kernal bt7_LMA_4.8.nb

m-1= ListLogPlot [sectionrates, AxesLabel -> {"Section Number", "ajj rate"}]
(»shows outgassing rate/section at last iterationx)

ajj rate

1.2180x 1078 [,

1.2170x 1078 |

Outf]=

1.2160x 1078 -

1.2150x 1078 |

L L v L L Section Number
20 40 60 80 100

mnf-}= ListPlot3D[Table[vars2 /. First[btw], {t, 1, timestep, 1}],
AxesLabel -> {"Section Number", "Time", "Pressure"}] (xmake a contour plotx)

Pressure. -7
oul- - 2 %10) 60

1.95x 1077

Section Number

1= ListLogPlot [lastpressure, AxesLabel -> {"Section Number", "Final Pressure (Torr)"},
Joined - True] (*plot lastpressure tablex)
Final Pressure (Torr)
2.050x 107 |
2.025x 107 |
2.000x 107 |
QU= 9754107 |
1.950x 1077 |

1.925x107" |

Section Number

kernal bt7_LMA_4.8.nb | 17

m-1= ListLogPlot[Table[vars2 /. First[btw], {t, 1, timestep, 1}],
AxesLabel -> {"Section Number", "Pressure (Torr)"}]
(*shows progression over 1 timestepx)

Pressure (Torr)
2.050x 107 feernnn..
2.025x 107 | T
2.000x 1077 |
QU 4 975 %107 |
1.950x 1077

1.925x1077 |

L L L L ‘ Section Number

20 40 60 80 100

nf-}= pressuresectiond5 = Table[data[i][[97]], {i, 1, tmax}];
(*shows how to extract pressure in a particular section
(section 97 in this example) over the entire time rangex)

n[-1= pressuresection2 = Table[data[i] [[2]], {i, 1, tmax}];
(»shows how to extract pressure in a particular
section (section 2 in this example) over the entire time rangex)

n-1= ListLogLogPlot [{pressuresection45, pressuresection2}, Joined - True,
AxesLabel -> {"Time (sec)", "Pressure (Torr)"}, GridLines -» All, Frame - False]

Pressure (Torr)

0.100

0.001

Out[«]J=

1077 o

Ll L T R L R L | L I A | L I | Time(sec)
1 10 100 1000 104 10°

