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1 Introduction

The Advanced LIGO (aLIGO) detector is composed of a Michelson interferometer with 4 km
Fabry-Perot optical cavities that function as the arms of the interferometer. These cavities
utilize high-reflectivity fused silica mirrors that form an optical cavity and interact with high
power laser beams. These mirrors are referred as the input test mass (ITM) and the end
test mass (ETM) of each arm as shown below in Figure 1. Each cavity has an optical power
that ultimately will reach 800 kW. A small portion of this power is absorbed by test masses
and then converted into heat. A thermal transient is created in the mirrors when the arm
cavities control systems are locked attaining optical resonance in the arm cavities.

Figure 1: Diagram of an Advanced LIGO interferometer with Fabry-Perot cavities. [11].

This thermal transient’s effect on the interferometer is dominated by two mechanisms.
The first is known as thermal lensing which is caused by a change of refractive index through
the thermo-optic effect. This thermal lensing can cause aberrations in the beam entering and
leaving the detector’s arm cavities that contribute to a deterioration of the mode matching
between the many optical cavities of the interferometer which in turn reduces the sensitivity
of the interferometer.[2]

The second effect is the high-reflectivity coatings of the test masses being deformed from
thermal expansion. A change of the radius of curvature (ROC) of the mirror is the first order
deformation and this shifts the frequency of the transverse optical modes (TEM) resonant
in the cavity. This changes the tuning conditions for parametric instabilities. As the mirror
warms there is also a relatively small increase in the mechanical mode frequencies due to
the small positive thermal dependence of the Youngs modulus of the mirror substrates.
Parametric instabilities arise when the frequency spacing between the fundamental mode
and a TEM mode equals the mechanical mode frequency. The interferometer can become
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inoperable and unstable if this condition is met.

These are problems that need to be addressed and investigated. Work has been com-
pleted by LIGO researchers to design and develop strategies aimed to compensate these
thermal effects such that they do not impact the detector sensitivity. The paper, “Thermal
modelling of Advanced LIGO test masses,” discusses how LIGO researchers have built a ther-
mal model of the test masses that applies shifts in mechanical mode frequencies as a probe
for the overall temperature of the mirror. This paper provides information on estimates of
the coating absorption of the ETMY of the Livingston detector.[2]

LIGO researcher, Simon Tait, has worked with the thermal model outlined above in an
effort to create an instantaneous absorption estimate of aLIGO test masses. He has modified
the COMSOL thermal model and has written Matlab scripts that extract eigenfrequency
and temperature data from the models. He has conducted parameterizations on the data
to create an exponential model which he compared with experimental frequency tracking.
The experimental frequency tracking integrates a transfer function and the extraction of the
coating absorption. His final results focus on the month of July 2017. His code compares
the simulated eigenfrequency of the test mass with the measured eigenfrequencies of the test
mass. The eigenfrequencies are measured in the light in the transmission of the OUTPUT
mode cleaner. As there are several other contributions to the change in eigenfrequency, his
code calculates the coating absorption by normalizing the gradient of this shift. Shifts in
the mechanical frequencies are tracked through this method during lock periods marked as
stable for meeting a specific time threshold.

Figure 2: This is the windowed Power Spectral Density of the OMC output showing resonant
frequencies of ITMs and ETMs in Hz. [1].

Tests have only been conducted between January and September of 2017. [1] However,
further work that can be integrated is implementing a Kalman Filter into the LLO Ther-
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mal Compensation System monitoring system to help produce an instantaneous absorption
estimate of the LLO test masses. This is what this project is focused on creating.[3]

1.1 Motivation

The purpose of this project is to use the eigenmodes of the test mass to measure its thermal
state. The ultimate goal is to build a Kalman filter to optimally estimate the eigenfrequencies
of the test mass. I will be working with COMSOL models and learning how to analyze and
extract useful information from them. I will also be using the LIGO CDS system that allows
me to get data from the interferometer archives. Integrating the Kalman filter state space
model parameters such as the test mass coating absorption can be inferred. This information
will then be used to optimize the thermal compensation, to minimize detrimental thermal
effects on the interferometer.

Currently, I have focused on the theory and implementation of the Kalman Filter after
having finished the COMSOL model analysis. I have built on the existing COMSOL Mul-
tiphysics models from S.Tait [3] and H. Wang [2]. I have also parameterized the simulated
eigenfrequency data in preparation for building a Kalman filter state space model. Further-
more, I have built a simplified Kalman filter that estimates eigenfrequencies of the test mass
that can be tested on actual data.

Before explaining the work I have done on building the Kalman Filter mirror degradation
monitor, it is useful to have a background on mechanisms and work that has been completed
beforehand. In the following sections I describe the essential components of the thermal
compensation system, introduce the finite element model,the completed parameterization,
and the Kalman Filter implementation.

2 Progress

2.1 Background

The following section describe the interferometer’s Thermal Compensation System and the
Pound Drever Hall technique utilized for locking the cavities. This is aimed to provide the
sufficient background information of the mechanisms involved in the extraction of eigen-
frequency data for this project. By understanding these systems, one can have a clearer
understanding of the functionality of mechanisms that play a role in providing the control
system inputs and outputs for the implementation of a mirror degradation monitor.

2.1.1 The Thermal Compensation System (TCS)

aLIGO’s Thermal Compensation System (TCS) is supposed to help mitigate thermal lensing
optical distortion effects.

The Ring Heater (RH) heats the test masses on the outside near the rear surface. This
produces a negative thermal lens in the optic and decreases the radius of curvature of the
concave mirrored surface of the test mass. The CO2 laser heats an area in the center of
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Figure 3: TCS system including ITM, ETM, circular ring heater (RH) to heat the test
masses on the outside, a CO2 laser projects various annular shapes onto the compensation
plates, and the Hartmann Wavefront Sensor (HWS) [3].

the compensation plate, this produces a positive thermal lens. The HWS measures the
wavefront distortion of the the HWS probe beam. This wavefront distortion is dominated
by the thermal lens in the ITM and CP. The purpose of this system is to compensate for
the laser power absorbed in the test mass mirror coatings. [1]

The power absorbed into the optic is proportional to the input laser power Ppower and αλ
the absorption at the wavelength of the laser. The formation of a thermal lens and thermal
expansion are the two effects created by the thermal transient that forms when the cavities
control system is locked producing a large laser power in the optical cavity, this locking
process will be described below. Figure 4 provides a visual of a the thermoelastic surface
deformation and wavefront distortion due to the thermal lens. The thermally distorted mir-
ror, illustrated as a dashed line, shows the change of radius of curvature of the mirrors. This
shifts the frequency of the transverse optical modes (TEM) resonant on the cavity by the
order of 103Hz. This can dramatically, change the tuning conditions for parametric insta-
bilities, inducing many different instabilities. The change in temperature of the optic results
in a small shift in the mechanical eigenmode frequency of the test masses of approximately
0.2 Hz. If the shifted frequency of the TEM modes and the spacing to the fundamental
central mode of the cavity become equal to the frequency of the mechanical modes, then the
radiation pressure of the optical modes can result in an exponentially increasing excitation
of the mechanical modes known as parametric instability (PI) leading to the unlocking of
the cavity. [1]

Figure 4: Thermoelastic surface deformation [3].

The cavities are locked through the Pound Drever Hall technique . A basic layout for
locking a cavity to a laser is depicted below. This is the setup that permits to measure
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length noise in the cavity. The main mechanism behind the setup can be divided into three
steps. A beam is sent into the cavity, a photodetector takes in the reflected beam, and then
its output goes to a length controlling actuator. With a correct feedback setup, the system
will hold at the length of the cavity where light is resonant. [10]

Figure 5: Locking a cavity to a laser. (Dashed lines are signal paths and solid lines are
optical paths) [10].

When the cavity is resonant, it also experiences a large laser power build up. A portion
of the light is absorbed in the high reflectivity optical coating. Currently, the detectors
have design specifications for ETM coatings to have an optical absorption of 0.5 ppm and
99.999 reflectivity at 1064 nm. [1] The input mirror is more complicated as the reflectivity
is formed by the ITM and another mirror PRM forming a coupled cavity. The resulting
resonance results in 400x more light in the arm cavity compared to the input light. The
small portion of this light that is absorbed in the coating dominates the thermal load on the
test mass resulting in the deformation as pictured on Figure 4.

As described in this section, understanding the TCS, the locking of a cavity, and the
behavior of a cavity when resonant are all necessary to comprehend. This helps to further
understand the next steps of the project which involve the thermal analysis of the test masses
and the development of the degradation monitor.

2.2 Final Element Model

This section focuses on the development of a model of the entire thermal system utilizing
COMSOL Multiphysics. The objective of the following procedures is to provide an analytical
model of the shift in eigenfrequencies. The results from this section provide an analytic to
arrive at a model for use as an input for the mirror degradation monitor Kalman Filter.

2.2.1 Method

Mechanical mode frequencies can be described as test mass thermometers. They depend on
the dimension of the test mass and on two material properties with a temperature depen-
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dence. These properties are the Young’s modulus and the Poisson ratio. [2] An analytic way
to express the eigenfrequencies of a cylinder is by following the equation below.

ωm = βm

√
Y (T )bulk
ρ(1+ν)

Equation 1. The Mechanical Mode Frequency [3]

As shown above, the mechanical mode frequency ωm is directly proportional to the
square root of the Youngs modulus Y (T )b and inversely proportional to the material density
ρ and the Poisson ratio ν. The variable βm is corresponding to a constant dependent on the
geometry of the cylinder.

2.2.2 Thermal Model

A thermal model of the test mass allows the temperature distribution in the test mass to be
estimated for a particular thermal load on the test mass. This thermal model includes the
test mass and its surrounding bodies. The accuracy of the aLIGO test mass thermal model
can be improved by including thermal coupling. This is done by including the radiative heat
transfer between the test mass and the other bodies surrounding it, which are discussed in
section 2.1.1 under TCS. [2]

Figure 6: This is a heat transfer model between an end test mass and its surrounding
elements, RH, RM, and the extra term represents other complex structures surrounding it.
[3].

The model above illustrates the mechanisms involved during the transfer of heat when
an arm cavity is locked. A portion of the light is converted into heat and scattered light from
the beam covers bodies surrounding the test mass. Longer time constants are introduced
to the test mass thermal transient because some of the heat from absorbed light radiatively
couples to other structures. This object’s increased temperature then radiatively couples
heat back to the test mass.[2]
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2.2.3 COMSOL

A state space model is required for the development of a Kalman Filter. It is a mathematical
model that takes a set of input, output, and state variables of a physical system. To create
a state space model of the test mass eigenfrequencies an accurate thermal model is required.
I used COMSOL Multiphysics heat transfer toolbox to perform this thermal modelling. I
modelled an end test mass, ETMY (test masses are nominally identical), and ran studies
that pertained to its acoustic modes. I attached the heat transfer module to calculate the
temperature of the ETM over time. A solid mechanics study is also attached to the module
calculating eigenfrequencies of the ETM over time.

An aLIGO test mass is a cylinder with a 170 mm radius and 200 mm thickness made
of Heraeus Suprasil 3001 fused silica.[4] When a 100 kW laser beam is shot at the system,
the model utilizes a heat source boundary condition with a Gaussian profile to simulate the
area in which the beam hits the mirror surface as shown in figure 10. With a laser beam of
this power, the coating absorption of 1 ppm would correspond to a total absorbed energy
of 0.1 W. The only input of the model that is given to it is the laser power step function.
When the cavity is unlocked it is 0 and when the cavity is locked the measure power is 0.1
W. Figure 7 depicts the inputs and outputs of this thermal model and figure 8 provides a
visual of the 2 dimensional thermal model of the whole system. [2]

Figure 7: A finite-element model showing the inputs, outputs, and the free parameters to
take into account when modelling a test mass. [2].

By running the physics, setting the material properties, and running a time dependence
and eigenfrequency study, H. Wangs [2] model was used as a guide to learn how to navigate
through the program. I focused on testing the behavior of fused silica. It is a material with
a unique behavior as its Youngs modulus has a temperature dependence. This causes the
rise in frequency of the mechanical modes of the material. Below is a table of the material
properties modelled for this material.
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Figure 8: This shows the full dimensions of the 2DAS model, including scattering contri-
bution (Extra Heating Term) Term [1].

Table 1: Fused Silica’s Material Properties
Material
Property

Symbol Fused Silica Unit

Density ρ 2203 kg
m3

Poisson’s Ratio ν 0.17 1
Young’s Modu-
lus

E (7.3x1010)(4T ) Pa

Thermal Con-
ductivity

κ 1.38 W
mK

Thermal Expan-
sion Coefficient

α 5.5x10−7 1
K

Heat Capacity Cp 740 J
kgK

Relative Permit-
tivity

ε 3.8 1

Electrical Con-
ductivity

σ 1x10−14 S
m

Surface Emissiv-
ity

εe 0.93 1

I conducted a thermal modelling simulation by adding a theoretical heating load on one
of the faces of the test mass. I then conducted a time dependent study to observe how the
model heated up by the Boundary Heat Source. When an object is vibrating with a certain
eigenfrequency (natural frequency), the structure of the object deforms into a corresponding
shape. The COMSOL three dimensional visual of the mode shape is an exaggeration of
the deformation, but it provides us a geometrical understanding of the eigenmode. An
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eigenfrequency analysis provides the shape of the mode, but the actual size of the deformation
can only be determined with the knowledge of an actual excitation with damping properties.
With the implementation of heat transfer physics to understand the effect the shooting of the
high-power laser beam had on the model, I was able to model the thermal transient formed.
To extract the eigenfrequency information from the time dependent thermal analysis output
the COMSOL MATLAB interface was required.

The thermal model includes the end test mass (ETM), reaction mass (ERM), and the
ring heater (RH). Figure 2, illustrates these components which form part of the TCS. The
geometry of the model is simplified to be a 2-dimensional Axis-symmetric representation of
the system in order to avoid high computational demands that would be present while run-
ning a realistic geometry. This axis-symmetric model required heating loads including the
main interferometer beam being axis-symmetric which is adequate for the current analysis.
Moreover, optical absorption of the coating and scattering from the surrounding suspensions
can also be implemented without the burden of having them exponentially increasing the
solution time. However, this model is restricted to only monitor circularly symmetric me-
chanical eigenmodes. There is historic LIGO data containing the eigenfrequencies of 5.9, 6.0
and 8kHz modes. These modes have been analyzed with a 3D geometry model. The 5.9 and
6.0kHz modes are not axis-symmetric. The 8kHz mode is axis-symmetric, as a result the
rest of this report will focus on the 8 kHz mode.

Figure 9: Mechanical mode shape of the 2DAS modelled ETM surrounded by the Ring
Heater, ERM and an approximated suspension. [1].
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Figure 10: The change in the color has a radially outward changing direction which depicts
the radial temperature gradient of the optic. [1].

An aLIGO interferometer’s arm cavity contains a 750 kW Gaussian beam centered in the
cavity. The equation below shows how the power absorbed by the optic, Pα, is calculated.
The ω corresponds to the beam radius of the incident Gaussian light source and the value is
6.2 cm, the r refers to the distance from the center of the beam. Pin is the power input into
the Fabry Perot cavity, kPRC is the gain of the power recycling cavity, and kAC is the gain
from the arm cavity.[1]

Pα = 2(PinkPRCkAC)
(πω2)

exp(−2r
ω2 ) 1

αc

Equation 2. Power absorbed by the optic [1]

The αc is the absorption of the coating on the test mass and it has been measured
to be approximately 1.4 ppm at 1064 nm by using a Hartman Wavefront Sensor (HWS)
for ETMY.[1] Furthermore, while analyzing the model, I noticed how the shift in ETM
mechanical mode frequency was observed with relation to the surrounding optics in over
40 hours. By adding more components to the simulation this produces an elevation in re-
radiation effects from the addition of these bodies. As a result, there is an increase in the
calculated change in frequency over time [1].

2.3 Model Parameterization

With a clear understanding and analysis of COMSOL, I derived the curve fitting exponential
model described in S. Tait [1]. By using MATLAB to obtain the COMSOL data of the
eigenfrequency shift of the specific eigenmode 8.126 kHz, one can obtain the modelled shift
of the frequency. COMSOL provides us with an analytical model and my goal is to extract
a good fit of this analytical model to obtain an exponential model that can be utilized for
the Kalman Filter which will be explained in the next section.

The equation below is one of the fits for frequency change in temperature calculated
with COMSOL. This is a single term exponent with respect to time. The A corresponds to
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the total change in frequency, b1 is the model time constant, and c1 is the frequency at room
temperature. This model can then be used to produce a simulated absorption estimate.

A(1− e−b1t) + c1 Equation 3. Exponential Model [1]

Before extracting the data through the MATLAB interface, I changed the COMSOL
model by removing the frequency shift produced by heating and cooling and only kept the
heating transient which would simulate a locked state. This heating transient shift to a cool-
ing transient is a linear time invariant system. The model was clarified by adding descriptions
to the parameters and variables to understand how each one was derived. By removing the
cooling transient, one could obtain a set of frequencies for a specific eigenmode. Simon’s
code produced an estimate for the change in temperature and frequency with self-heating
from his pre-solved COMSOL model. Before extracting the eigenfrequencies, I extracted
the temperature difference from the model for all the ETM points and plotted it to see if
I observed a reasonable behavior representative of the heating. The graph below illustrates
the heating transient formed for all four bodies modelled.

Figure 11: Graph 1: The graph above can be obtained by plotting on MATLAB the
temperature over time of the end test mass and the other bodies to observe the behavior to
model the heating of the masses. . [1].
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Once I finished plotting Graph 1, I ran the loop through the data for the specific eigen-
mode. I then applied the curve fitting tool from MATLAB to work on fitting the analytical
data to a second-degree exponential model to see if it provided a better fit to the data. As
explained in section 2.2.2, thermal coupling must be taken into account when creating a
thermal model. As a result, I decided to change the model to see if longer time constants
are introduced. This could represent how some of the heat from scattered light radiatively
couples to other elements.

A(1 − 2e−b2t + e−2c2t) + d2 Equation 4. A Test Exponential
Model

The gain A was approximately 0.09, the time constants b2 and c2 were 0.159 and 0.079,
and d2 the eigenfrequency at room temperature was 8126. While fitting the model I made
sure to keep the lower and upper limits large to ensure I was not forcing the data to fit a
specific mold. Although the goodness-of -fit statistics obtained for both this model and the
original model were very similar and the r squared was approximately 0.9936-0.9958, the
first data point at time zero did not match the exponential model. By forcing d to be the
y-intercept value of 8126.17, this would result in a less fit model of the function and would
require a forcing of the variables b2 and c2.

Below is a graph of the curve fitting model with the value obtained for b2 and c2 previously
stated. Both the first order exponential model and the second order exponential model
provide closely similar values for the goodness-of-fit statistics. In order to know which
exponential model is best to apply for the Kalman Filter requires the testing of both in the
implementation of the filter to analyze which assumed model provides the most reasonable
coating absorptione estimates. I decided to apply the first order exponential model as an
input for the mirror degradation monitor. Further work can be done by applying the second
order exponential model instead to compare which curve fit model is best to apply for the
monitor.

Figure 12: Graph 2: Exponential Model curve fitting of the analytical data from COMSOL.
[1].
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2.4 Calculated Coating Absorption

This section focuses on the results obtained by Simon for the period of January through
September 2017 with estimates of the coating absorption.[1] The purpose of this section is
to investigate the previous methods used to investigate coating absorption such that the
Kalman Filter method can be contrasted and compared to this previous method.

The following graphs show Simon’s results of calculated coating absorptions during this
time period. Since the eigenfrequency data can only be measured from the OUTPUT mode
cleaner during lock states, the unlocked state estimates were produced by applying the
method of interpolation. This method constructs data points for the unlock state within the
range of the discrete set of known eigenfrequency data and following the inverse behavior of
a lock.

Figure 13: The calculated optical absorption during locked and unlocked states of ETMX
between January and September of 2017. o refers to locked times and x is the interpolated
estimate for the unlocked states. [1].

Figure 14: The calculated optical absorption during locked and unlocked states of ETMY
between January and September of 2017. o refers to locked times and x is the interpolated
estimate for the unlocked states. [1].
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A prediction of the coating absorption was made, using the equation below,

αcoat =
4fmeas
4fsim

αsim

Equation 5. Coating Absorption [1]

where the numerator is the gradient of the measured frequency shift with time and it takes
into account both locked and unlocked states. The denominator is the simulated change in
frequency. The code to complete this coating absorption estimate was run for the month of
July and the approximation was reasonable. It can be used to model both ITM and ETM.
Although an understanding of this instantaneous coating absorption extraction technique is
ideal for further comparisons, this project focuses on creating a different method of extracting
the coating absorption through the implementation of a Kalman Filter.

2.5 Kalman Filter Implementation

2.5.1 Kalman Filter Theory

A Kalman Filter is a recursive algorithm that takes in as input a model and measurements
to output less noisy and more accurate estimates. This filter is ideal for real time problems
since it has the advantage of only taking in the previous state of the system and not requiring
any other history. The figure below provides a clear overview of the mechanism behind the
algorithm and its functionality. It is widely used in different areas such as navigational
systems, guidance, and controlling vehicles. [5]

Figure 15: Kalman Filter thinking process. [5].
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The application of a Kalman Filter for an internal system requires the use of the state-
space representation of this system. The equation below illustrates how the present state is
dependent on the previous state.

xk= Akxk−1 + Bkuk+ wk Equation 6. [5]

Ak represents the state transition model used to the previous state xk−1 and Bk represents
the input-control model. The input-control model is applied to the control-vector uk and
the state matrix is applied to the state-vector xk−1. The process noise is represented by wk
which in this case is a univariate normal distribution with covariance Qk. [5]

zk= Ckxk +vk Equation 7. [5]

Once the observation, zk (measurement), is taken representing the true state xk, as shown
above, Ck represents the observation model which is applied to the state vector at time
k. Taking account of the measurement noise,vk, signifies the zero mean univariate normal
distribution noise in this case with covariance Rk. The observation is not affected by the
control vector and as a result Dk, the output-control model is equal to zero.

There are two variables that represent the state of the filter which are x̂k|k known as the
a posteriori with an estimate at time k, and Pk|k which is the a posteriori error covariance
matrix. The notation of these states can be described as x̂a|b where a is the time of the
estimate and b is the time of the observation and b is restricted to be less than or equal to
a. Below I have divided the Kalman Filter into two sections as it is normally explained in
two phases: prediction and correction. [5]

Prediction

x̂k|k−1 = Akx̂k−1|k−1+ Bkuk Equation 8. [5]

Pk|k−1 = AkPk−1|k−1A
T
k+ Qk Equation 9.[5]

The prediction phase depends on the time-step’s previous state as illustrated above. The
predicted state x̂k|k−1 is known as the a priori state estimate as it depends on the observation

at time k-1. P̂k|k−1 is the prior state covariance matrix. [5]

Correction

Calculating Kalman Gain:

Sk = CkPk|k−1C
T
k+ Rk Equation 10.[5]

Kk = Pk|k−1C
T
kS−1k Equation 11.[5]

Updating Estimate with Measurement:

ỹk = zk - CT
k x̂k|k−1 Equation 12. [5]

x̂k|k = x̂k|k−1+Kkỹk Equation 13. [5]

Update Error Covariance:

Pk|k = (I -KkCk)Pk|k−1 Equation 14. [5]

The correction phase requires the calculation of the Kalman Gain as shown in equations 10

page 15



LIGO-T1800224–v0

and 11 and then the updating of the estimate state by using the measurement. Moreover, the
estimate state and the error covariance are updated by observing from the current time-step
rather than the previous step.

2.5.2 Building a Kalman Filter

The following steps outline an approach towards building a Kalman Filter. These are the
steps I have followed while moving forward in the project. [6]

1. Understand the situation: Look at the problem and break it down to the mathematical
basics.

2. Model the state process: Starting with a basic model, it may not work effectively at
first, but this can be refined later.

3. Model the measurement process: Analyze how you are going to measure the process.

4. Model the noise: This has to be completed for both the state and measurement process.
The base Kalman filter assumes Gaussian (white) noise, so make the variance and covariance
(error) meaningful (i.e., make sure that the error you model is suitable for the situation).

5. Test the Filter: Observe the behavior of the filter.

6. Refine the Filter: Try to change the noise parameters, if necessary go back and rethink
the situation.

[6]

3 Results

3.1 Practice Kalman Filter

I started by going through a Kalman Filter tutorial to have a clearer understanding of the
process before building the project monitor. I have implemented a practice Kalman Filter
tracking the two-dimensional position of an object using Matlab. The following sections
explain the process behind setting up the situation, state process, and analyzing the testing
of the filter.

3.1.1 State-Space Representation

I started by defining the position (x), velocity (v), and acceleration (a) of the object and then
creating the state space variables. The state space vector is composed of the four variables
which were derived from following the four kinematic equations below. [12]

x(k) = x(k − 1) + tsvx(k − 1) + t2s
2
ax(k − 1) Equation 15.

y(k) = y(k − 1) + tsvy(k − 1) + t2s
2
ay(k − 1) Equation 16.

vx(k) = vx(k − 1) + tsax(k − 1) Equation 17.
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vy(k) = vy(k − 1) + tsay(k − 1) Equation 18.

State-vector, X

The state space is represented as:

X =


x(k)
y(k)
vx(k)
vy(k)

 (19)

State-propagation matrix, A

The state-transition model which is derived by following equations 15-18 and can be ex-
pressed as:

A =


1 0 ts 0
0 1 0 ts
0 0 1 0
0 0 0 1

 (20)

Control-Input Matrix, B, and Control vector, u

The control input matrix is derived from the acceleration of both the x and y directions and
also applies the kinematic equations. The control vector is composed of both the x and y
accelerations.

B =


t2s
2

0

0 t2s
2

ts 0
0 ts

 u =

[
ax(k − 1)
ay(k − 1)

]
(21)

Complete Process Model

The full state-space model for the tracking of a single object becomes: [12]

X(k) =


x(k)
y(k)
vx(k)
vy(k)

 =


1 0 ts 0
0 1 0 ts
0 0 1 0
0 0 0 1



x(k − 1)
y(k − 1)
vx(k − 1)
vy(k − 1)

+


t2s
2

0

0 t2s
2

ts 0
0 ts

[ax(k − 1)
ay(k − 1)

]
(22)

X(k) = AX(k − 1) +Bu(k − 1) + w Equation 23.

Observation Model, C, and Observations, Z

The observation Z(k) comes from real measurements and C is the observation model. The
prediction of the measurement is obtained by utilizing C which maps the state-space into
the observation space.[8]

C =

[
1 0 0 0
0 1 0 0

]
(24)

Z(k) = CX(k) + v Equation 25.

By following the state-space model outlined above and the Kalman Filter algorithm,
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I created a Matlab script that generates the state space representation of the model and
takes in simulated measurement data and control parameter data. It then applies a for loop
to extract the Kalman estimate for a given time interval as it goes through both x and y
measurements. [12]

Below are two graphs that distinguish the model and the measurements and the mea-
surements with the Kalman Estimation. The model being applied is an assumed model and
is not in fact the real model. This is analogous to my project’s Kalman filter since I will
be utilizing an assumed model that does not behave identically as the real model. A real
model is not available to us and as a result we have to parametrize to find the closest match.
By using an assumed model and actual measurements, a better estimate of the behavior of
the system can be modelled. However, it is crucial to apply the correct process variance as
explained in the following section.

Figure 16: The top graph is a comparison of the assumed object’s x-displacement and
the actual x-measurement. The bottom graph is a comparison of the object’s measured
x-displacement and the estimated displacement.
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3.1.2 Tuning the Practice Kalman Filter

When setting the Kalman Filter, it is imperative to carefully choose the values for the process
variance Q and the measurement variance R. The variance corresponds to the fluctuations
of the data and the choice of Q and R all depends on the trust one has on the data. [5]

The figure below illustrates an incorrect process variance known as overfitting where
the Kalman estimates confide too much in the measurement data over the assumed model.
This problem takes place when Q is significantly greater than R. It results in estimates that
contain the measurement noise and that do not provide a better estimate of the behavior of
the system.

Figure 17: Incorrect process variance leading to an overfitting as shown above. The Kalman
Estimate trusts the measurements over the model.

Figure 18 depicts another incorrect process variance known as underfitting where the
Kalman estimates confide too much in the assumed model data over the actual measurements.
This problem takes place when R is significantly greater than Q. This results in estimates
that are dominated by the assumptions of the model.

Figure 18: Incorrect process variance leading to an underfitting as shown above. The
Kalman Estimate trusts the assumed model over the model.

The figure below proves a better fit as it confides in both the measurements and the assumed

page 19



LIGO-T1800224–v0

model. When setting up a Kalman Filter, it is crucial to carefully decide on the process
variance as it controls the behavior of the Kalman estimates.

Figure 19: Correct process variance leading to an good fitting as shown above. The Kalman
Estimate has a balanced trust in both the model and the measurements.

3.1.3 Extracting the Velocity from the Kalman Filter

After completing this practice Kalman Filter, the velocity state space variables for both the x
and y direction were extracted. The purpose of this exercise is to see how a state parameter
that is not a direct observable, such as coating absorption, might be extracted from the
Kalman Filter. The graph below illustrates both velocity graphs of the two directions.
Theoretically, if the behavior of the following results were based on the assumed model
of the displacement, the velocity would be linear with a positive slope. This is since the
displacement was parabolic and concave up. The graphs below are rising and linear regression
can be applied to them to obtain the linear equations that best fit the data, but my goal
was to transition into working on the project Kalman Filter. These plots were extracted by
simply taking the third and fourth state space variables of the state-space representation of
the model.

Figure 20: The extraction of both the x and y direction velocities from the state vector of
the state-space representation of the system.
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3.2 Coating Absorption Estimate Kalman Filter

After completing a practice Kalman Filter and gaining deeper insight into the steps involved
within the recursive algorithm, I am now working on the implementation of a mirror degra-
dation monitor. The ultimate goal is to create a real-time monitor that extracts estimates
of the coating absorption while applying Kalman Filter theory.

3.2.1 Approach

With the first order exponential model described in section 2.3 and the detector’s eigen-
frequency measurements for a set period of time, the approach is to first create a Kalman
Filter with simulated data and then test it. The model below is the normalized exponential
that will be used for the state-space representation. After completing the testing of the
filter, I will work on the extraction of the coating absorption and transition into the actual
implementation of real data.

f(t) = µ(1− e−t
τ ) Equation 26.

3.2.2 State-Space Representation

To create the state-space representation one must first understand that we are taking a
physical system as a set of input, output, and state variables. These components are related
by first-order differential equations which I will find by starting with the unit step response
of the system given by the model above. [5]

f(s) = L {µ(1− e−t
τ )}

= N
s2+Ds

Equation 27.

I took the Laplace transform operator L and applied it to the analytical model and I obtained
the expression above where the coefficients N and D correspond to the following variables,

N = µ
τ

D = 1
τ

Equations 28 and 29.

The transfer function of the system is then given by taking,

f(s)
P (s)

= sf(s)= N
s+D

Equation 30.

I then took the inverse Laplace transform of the transfer function which ultimately results
in giving us the differential equation.

L−′{f(s)(s+D) = P(s)N}

ḟ(t) + Df(t) = Np(t) Equation 31.

I then applied the differential equation above to show the state-space representation of
the system as depicted below where 4k corresponds to the sampling period and zk is the
observation measurement and is a variable of interest. [5] The model below illustrates how
I am working with a one degree of freedom system.

[fk] = [1 - D4k][fk−1] + [N4k][Pk] (32)
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State-Matrix: Input-Control Matrix:

A = [1-D4k] B = [N4k]

Measurement-Matrix: Observation Model:

C = [1] zk = fk (33)

3.2.3 Parameters and Coefficients Estimation

With the state-space representation above, the following table shows the values of the pa-
rameters and the coefficients. The parameters were obtained as I outlined in the previous
section by creating a parameterization of the COMSOL data through Matlab.

Gain(µ) 0.8114
Tau (τ) 6.289
N 0.129
D 0.159

Table. 2.

3.2.4 Simulated Simple Kalman Filter Results

After completing the Matlab script with the given parameters, coefficients, and the state-
space model described in section 3.2.2, I started by simulating a locked state. The control-
input laser power is acting as a step function providing 0.1 W of power to the system.
The graph below illustrates the shift in eigenfrequencies during the simulated lock with a
comparison between the analytical model derived in section 2 with noisy eigenfrequency
measurements.

Figure 21: Simulated Lock State with the analytical model and simulated noisy measure-
ments.
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Once the Kalman Filter runs through the time interval and goes through the noisy measure-
ments comparing them to the analytical model, the following graph depicts how the Kalman
estimates compare to the measurements.

Figure 22: Simulated Lock State with the Kalman estimates from the MATLAB code and
simulated noisy measurements.

This is how the monitor should ideally function as it runs through real-time eigenfrequency
measurements, but the goal of the project is to extract estimates of the coating absorption.
I reached a problem when realizing that this extraction would not be as efficient as first
intended to.

3.2.5 Problem Extracting Coating Absorption

After completing the Kalman Filter, I arrived at a problem when reasoning through my
strategy of extracting the coating absorption. Some questions I should have asked myself
during the state-space representation process and while analyzing the situation include,

• Is there a parameter in the state space model that is proportional to the coating
absorption?

In our case, the parameter associated with the coating absorption is the gain found in the
exponential model defined as µ. With this parameter, I then need to review the following
questions.

• Is it possible to obtain the state-space representation of the gain? [5]

• Can I implement a Kalman Filter with the state-space of the gain? [5]

In order to obtain the state-space representation of the gain, this parameter must have
a linear relationship to the system. The current state vector is one degree of freedom and
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even though if I were to change it to two degrees of freedom it cannot include the gain. The
gain needs to be linearized in order to implement the Kalman Filter. The common Kalman
Filter only applies for linear systems. However, there is a version of a nonlinear Kalman
Filter known as the Extended Kalman Filter which linearizes around the current mean and
covariance. The issue with this type of filter is that it can result in high computational costs.
[5]

The problem with the current Kalman Filter is that the Kalman Estimate Gain does not
update itself. When simulating a noise in the measurements that would be representative of
the change in coating absorption, the Kalman estimate does not update. This is due to the
fact that the gain is found within the input-control matrix, B, as outlined in section 3.2.2.
The input-control matrix in the Kalman Filter algorithm remains unchanged. During a lock
state, when the laser power is nonzero at approximately 0.1 W, the coating absorption is
correlated to the laser power. Due to this relationship which is described in the COMSOL
section 2.2.3, the actual eigenfrequency measurements for the 8 kHz eigenmode are assumed
to contain this coating absorption noise. However, the Kalman estimate does not update
itself due to this noise in the measurements.

Figure 23: Simulated Lock State where the actual noisy measurements have a factor of 2
multiplied to the input laser power and the Kalman Estimate is not updated.

The following two graphs illustrate the problem. Figure 23 depicts an example where
the measurements have an extra factor added to the input laser power. It changes the gain
coefficient in the measurements as this noise increases the laser power’s effect and can be
analyzed as the coating absorption’s effect. The problem is that the Kalman Estimate’s gain
coefficient remains unchanged with this measurement noise. Figure 24 below applies the same
analysis, but in this case the Kalman Estimate’s gain is greater than the measurements. The
measurements have a noise simulating an effect where there is a factor reducing the laser
power’s effect. Once again, the Kalman Estimate does not experience a reduction in gain to
match the behavior of the noisy measurements. Although both the Kalman Estimate and
the noisy measurements graphs eventually converge to the same value during a lock, the
difference in the early behavior of a lock is a problem since the coating absorption extraction
is dependent on analyzing this time interval.
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Figure 24: Simulated Lock State where the actual noisy measurements have a factor of .5 to
the input laser power and the Kalman Estimate is not updated.

3.2.6 Creating a Nested Kalman Filter

The approach I took in order to monitor and change the gain of the Kalman Estimate was
centered on creating a nested Kalman Filter. Although the gain can be linearized, due to
the time constraint of the project, this measure will be postponed for later.

Applying the original Kalman Filter I created for this system as the basis of the nested
filter, the strategy behind this more complex monitor involves updating the input-control
model, B, and the process covariance at the end of each lock state. Since the process
covariance is directly proportional to the product of B and its transpose, by updating B
the process covariance changes as well. As I explained in the previous section, the gain is
directly related to B. At the end of a lock state, the Kalman Estimate will either be above or
below the measurement data as illustrated in figures 23 and 24. By measuring the average
residual during this time frame between the measurement and the Kalman Estimate, this is
then factored to the input-control model. The outer Kalman Filter is a simplified Kalman
Filter where the model noise standard deviation, w, and the measurement noise standard
deviation, v, are set at a value with no time evolution. As a result, I currently cannot provide
estimates of the process covariance, Q, and the measurement covariance, R.

Bupdated = Binitial + (average residual)*Binitial Equation 34.

The equation above explains how the input-control model is updated at the end of each
lock period. The gain is then updated at the end of each lock period and graphed separately
to illustrate the change as the detector alternates between locked and unlocked states. With
a larger sampling time, the gain can be updated to the point where the Kalman estimates’
gain is closer to the actual measurement gain. After completing the Matlab code which
implements this simplified nested Kalman Filter, I tested it with a simulated time frame of
alternating locked and unlocked states to test two cases.

Simulation Results:

The first case involves encountering noisy measurements where the control parameter,
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laser power, has an unknown factor greater than 1 resulting in a higher gain coefficient in
the measurement data. As shown below, the nested Kalman Filter updates itself at the end
of locked states to update its gain coefficient. This results in an increase in the gain and this
change in gain is proportional to the coating absorption.

Figure 25: Simulated period of locked and unlocked states where the noisy measurements
have a factor >1 applied to the input laser power and the nested Kalman Filter updates
itself in a bias towards this noise’s behavior.

The second case involves encountering noisy measurements where the control parameter,
laser power, has an unknown factor less than 1 resulting in a lower gain coefficient in the
measurement data. As shown below, the nested Kalman Filter updates itself at the end of
locked states to update its gain coefficient. This results in a decrease in the gain and this
change in gain is proportional to the coating absorption.

page 26



LIGO-T1800224–v0

Figure 26: Simulated period of locked and unlocked states where the noisy measurements
have a factor <1 applied to the input laser power and the nested Kalman Filter updates
itself in a bias towards this noise’s behavior.

4 Future Work

Moving forward, these last three weeks I plan on testing my nested Kalman Filter with
actual measurement data. IWAVE is a frequency tracking package that will be used to
estimate eigenfrequencies in real time. I will be integrating IWAVE plot data provided by
the researcher Timesh Mistry and focusing on analyzing the measurement noise to further
understand its behavior. As described in the last section, depending on the behavior of the
measurement noise, I can extract and analyze if there is a change in the coating absorption.
Furthermore, while adapting the nested Kalman Filter to an actual data set of of the month
of July 2017 including both locked and unlocked periods, I will work on analyzing these
results.

After obtaining results with actual eigenfrequency data, the next steps that need to be
taken with this project revolve around improving the model of the system. The extraction of
the estimated coating absorption can be completed by applying the linearization technique
briefly discussed in section 3.2.5. Furthermore, the analytical model can be improved by
running further studies to analyze higher order exponential models. By adding several other
factors such as ambient temperature to the mirror degradation monitor, the monitor can be
refined and further improved.

5 Conclusion

Overall, these past seven weeks have helped me learn different skills and have taught me how
to manage my time. Although I have met challenges along the way, I have a clearer view
on what I need to do to accomplish my goals these next few weeks. Most of my challenges
have been technical while trying to navigate and write Matlab code. I have also met the
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problem that the initial purpose of using the Kalman Filter to extract coating absorption
is not directly applicable. With the guidance of my mentor I have been able to navigate
around this problem through the implementation of a nested Kalman filter. My main goal
is to complete the testing of the nested Kalman Filter on real data in order to see if this
technique is a plausible mirror degradation monitor that can be utilized in the future.

I anticipate to continue working on my analytical skills while I test my nested Kalman
Filter on actual eigenfrequency data from a specific period extracted from IWAVE plots.
I plan on using my last weeks wisely to obtain and analyze results, while also working on
setting a thorough list of further work that can be completed by someone who would like
to continue working on this project. Challenges that I may face when testing the filter with
real data can include having too noisy measurements. If I come across having a filter that is
either over or under fitted, I will follow the tuning guidelines in section 3.1.2 that I learned
while completing the practice Kalman Filter. Furthermore, I plan on testing it as soon as
possible to quickly mitigate any technical issues I may come across and to transition into the
analysis of the data smoothly these last weeks. Hence, I plan on dedicating the final week on
transitioning into improving the model and providing through my final report a clear outline
of what I have worked on for someone interested in conducting future work.
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6 Code

6.1 Practice Position Tracking Kalman Filter

6.2 Coating Absorption Simple Kalman Filter
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