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Objectives:

I will focus on the following topics:

❖ Background – Thermal Compensation System

❖ Finite Element Modelling

❖ Parameterization

❖ Kalman Filter Implementation

❖ Results 

❖ Future Work
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Advanced LIGO (aLIGO)
❖ Michelson 

interferometer with 

Fabry-Perot optical 

cavities

❖ Utilizes high-

reflectivity fused

silica mirrors

❖ Optical cavity with

800 kW ultimate 

optical power

❖ Apply Heat    Thermal 

transient forms in the

mirrors
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Thermal 

Compensation 

System
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Thermal Transient Effects
❖ Two Main Effects:
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Thermal Lensing • Aberrations in the beam

• Mode matching

problems between

cavities

Reduces 

sensitivity of 

detector

Thermal Expansion

• Change of radius of 

curvature of mirrors 

(ROC)

• Shifts frequency of 

transverse optical 

modes (TEM)

Parametric 

instabilities

-Freq. between 

TEM & 

Fundamental 

mode = MM

Warming shifts 

mechanical mode (MM)  

frequencies
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Thermal Compensation System

❖ Purpose: compensate for laser power absorbed in test 

masses 

❖ Helps mitigate thermal lensing optical distortion effects 

[1]
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Negative Thermal 

lens, decreasing ROC
Positive thermal lens

HWS-measures 

wavefront distortion 
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Shift in Mechanical Mode 

Frequencies

[1]
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Finite Element Model: Method
❖ Mechanical Mode Frequencies = Test Mass Thermometers

❖ Depend on:

❖Dimensions of the Test Mass (Mirror) 

❖Elastic Constants: 

❖Young’s modulus 𝑌 𝑇 𝑏𝑢𝑙𝑘- relation between stress and strain-

uniaxial deformation

❖Poisson’s Ratio 𝜈- ratio between transverse strain to axial strain

𝜔𝑚 = 𝛽𝑚
𝑌(𝑇)𝑏𝑢𝑙𝑘

𝜌(1+𝜈)
[1]

▪ Mechanical Mode Frequency: 𝜔𝑚

▪ Constant Dependent on the geometry of the cylinder: 𝛽𝑚
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Finite Element Model: Thermal 

Model
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❖ Heat Transfer model

between ETM &

surrounding elements

❖ Transfer of heat when

arm cavity is locked

❖ Mechanisms involved

❖ RH

❖ RM

❖ Extra Term: Complex 

Structures 

surrounding it

[2]
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Finite Element Model: Thermal 

Model

❖ aLIGO test mass

❖ Cylinder: 170 mm radius, 200 mm thickness

❖ Heraeus Suprasil 3001 fused silica

❖ 100 kW laser beam

❖ Coating absorption of 1 ppm corresponds to total absorbed energy 0.1 W

❖ Inputs, outputs, and the free parameters involved when 

modelling a test mass
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Finite Element Model: COMSOL
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❖ 2-dimensional Axis-

symmetric representation 

of the system

❖ Input laser beam heating 

load

❖ Restricted to only monitor

circularly symmetric 

mechanical eigenmodes

❖ LIGO historic data for 5.9,

6.0 and 8 kHz modes

❖ Only the 8 kHz mode is 

axis-symmetric  [3]
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Finite Element Model: COMSOL

Applying Heat Equation in a system with a fixed laser beam
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COMSOL depiction of ETMX Temperature Change with Self Heating
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Finite Element Model: COMSOL

❖ Modelled ETM mode shape for the 8 kHz eigenmode 
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Model Parameterization 
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❖ Take COMSOL numeric simulation model of 8 kHz 

eigenfrequency shift and fit a model

First- Order Exponential Model Second-Order Exponential Model

𝐴 1 − 𝑒−𝑏1𝑡 + 𝑐1

A: Total change in 

frequency

𝑏1: Model time constant

𝑐1: Frequency at room 

temperature 

𝐴 1 − 2𝑒−𝑏2𝑡 + 𝑒−2𝑐2𝑡 + 𝑑

A: Total change in frequency

𝑏2 & 𝑐2: Time constants

d: Frequency at room 

temperature
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Model Parameterization
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Red line: 

Exponential Fit 

Model

Blue Points:

Numeric Simulation COMSOL data

Frequency 8 kHz vs t

Frequency Shift over Time

F
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Coating Absorption Extraction 

Techniques
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Simon Tait’s 

Technique

Applying the

exponential model and 

tracking eigenfrequency 

shift data

This Project’s 

Technique

Applying the exponential 

model, eigenfrequency 

measurements, control 

parameters

Implement a Kalman

Filter to extract coating 

absorption

Experimental frequency 

tracking to extract 

coating absorption
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Kalman Filter Theory
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❖ Recursive algorithm

❖ Input: A linear model and noisy measurements

❖ Output: Less noisy and more accurate estimates

❖ Only requires current state to propagate to next time step

❖ Error (variances) are used to optimize estimates

❖ Combines inputs and measurements into model of the 

system                minimize uncertainty in the model

Assumed Model

Noisy Measurements

Kalman 

Filter 

Algorithm

More accurate

Model Estimate 

Input Parameters
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Kalman Filter Theory
❖ Requires state space representation of system

❖ Present state is dependent on the previous state:

𝒙𝒌 = 𝑨𝒌𝒙𝒌−𝟏 +𝑩𝒌𝒖𝒌 +𝒘𝒌

𝑨𝒌: State Transition Model

𝒙𝒌−𝟏: Previous state

𝑩𝒌: Input Control Model

𝒖𝒌: Control Vector 

𝒘𝒌: Process noise with 𝑸𝒌 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

❖ Observation is taken representing the true state 𝑥𝑘:
𝒛𝒌 = 𝑪𝒌𝒙𝒌 + 𝒗𝒌

𝒛𝒌: Observation

𝑪𝒌: Observation Model

𝒗𝒌:Measurement noise with 𝑹𝒌 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

LIGO 17
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Kalman Filter Theory
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Prediction:
• Predict state ahead

𝒙𝒌|𝒌−𝟏

• Predict the error covariance ahead

𝑷𝒌𝒌−𝟏

Correction:
• Calculate Kalman Gain (Minimum 

Mean Square Error: minimize trace 

of the state error)

𝑲𝒌

• Update estimate with measurement

𝒚𝒌 & 𝒙𝒌|𝒌
• Update error covariance

𝑷𝒌|𝒌

Initiate with 𝑥𝑘−1 𝑎𝑛𝑑 𝑃𝑘−1
[5]
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Building a Kalman Filter

1. Understand the situation                            

2. Model the state process 

3. Model the measurement process

4. Model the noise

5. Test the Filter

6. Refine the Filter
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Advantages Disadvantages

• Recursive nature

• Does not depend on

the history to

determine the next

state

• Relies on an accurate 

model

• Depends on linearity

of system

Inputs: Exponential Model, 

Noisy Eigenfrequency 

Measurements

Input Control Parameter: 

Laser Power 
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Project Initial Kalman Filter
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Approach: Normalized exponential model

𝑓 𝑡 = 𝜇 1 − 𝑒−
𝑡
𝜏

State-Space Representation:

𝑓 𝑠 = ℒ 𝜇 1 − 𝑒−
𝑡
𝜏 =

𝑁

𝑠2 + 𝐷𝑠
𝑁 =

𝜇

𝜏
D =

1

𝜏

Transfer function of the system:      
𝑓(𝑠)

𝑃(𝑠)
= 𝑠𝑓 𝑠 =

𝑁

𝑠+𝐷

Inverse Laplace Transform                              Differential Equation                      

ℒ−1 𝑓 𝑠 𝑠 + 𝐷 = 𝑃 𝑠 𝑁 ሶ𝑓 𝑡 + 𝐷𝑓 𝑡 = 𝑁𝑝 𝑡
𝑓𝑘 = 1 − 𝐷Δ𝑘 𝑓𝑘−1 + 𝑁Δ𝑘 𝑃𝑘

State-Matrix: 𝐴 = 1 − 𝐷Δ𝑘 Input-Control Matrix: 𝐵 = [𝑁Δ𝑘]
Measurement-Matrix: C = [1] Observation Model: 𝑧𝑘 = 𝑓𝑘
Parameters:

Gain (𝝁) Time Constant 

(𝝉)

0.8114 Hz 6.289 Hrs.
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Initial Kalman Filter: Simulated 

Results
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Underfit:
• 𝑅𝑘 >> 𝑄𝑘 variance

• Trusts model over

measurements

Overfit:
• 𝑄𝑘 >> 𝑅𝑘 variance

• Trusts measurements over 

model
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Problem Extracting Coating 

Absorption

❖ Dependent on the change of the gain parameter: 

𝑃𝛼 =
2(𝑃𝑖𝑛𝑘𝑃𝑅𝐶𝑘𝐴𝐶)

𝜋𝜔2
𝑒

−
2𝑟
𝜔2

1

𝛼𝑐
𝑃𝛼: Power absorbed by the optic

𝜔: beam radius of the incident Gaussian light source (6.2 cm)

r: distance from the center of the beam

𝑃𝑖𝑛: power input into the interferometer

𝑘𝑃𝑅𝐶: gain of the power recycling cavity

𝑘𝐴𝐶: gain from the arm cavity 

𝛼𝑐: coating absorption

LIGO Laboratory 22
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Problem Extracting Coating 

Absorption
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Simulated Lock state where the noisy 

measurements have factor of 2 multiplied 

to input laser power 

Simulated Lock state where the noisy 

measurements have factor of 0.5 

multiplied to input laser power
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Problem Extracting Coating 

Absorption

❖ Coating absorption 𝛼𝑐𝑜𝑎𝑡𝑖𝑛𝑔 is proportional to the 

gain parameter in the state space model

❖ The gain is not linearly related to the system

❖ Kalman Filters function with linear systems

❖ Options:

❖Linearize the parameter to the system

❖Create a nested Kalman Filter that updates the change

in gain

LIGO Laboratory 24
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Nested Kalman Filter Approach

LIGO Laboratory 25

❖ Gain directly related to the input-control model B

❖ Update B and the process covariance at the end of each 

lock state

Process Covariance: 𝑄𝑘 = 𝐵𝑤2𝐵′

❖ Measure average residuals during lock time frame 

between measurement data and Kalman Estimate

𝐵𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ∗ 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙
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Nested Kalman Filter: Overfit 

Simulation
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Simulated period of locked and unlocked states where the noisy measurements have factor >1 

applied to the input laser power and the nested Kalman Filter updates in a bias towards the noisy 

behavior
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Nested Kalman Filter: Underfit 

Simulation
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Simulated period of locked and unlocked states where noisy measurements have a factor <1

applied to the input laser power and nested Kalman Filter updates itself in a bias towards the

noise’s behavior 
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Results: Testing Data from July 2017

LIGO Laboratory 28

2 hour lock periods

IWAVE data

Gain Change at 

end of Lock
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Results: Testing Data from July 2017

LIGO Laboratory 29



LIGO-G18xxxxx-v1

Form F0900043-v1

Conclusions
Takeaways:

• Several other factors including ambient temperature need to be incorporated to 

improve the model of the system

• Kalman Filters provide useful monitors and more accurate models of a system

Future Work:

• Run the filter over longer periods of time with IWAVE data to improve absorption 

estimate

• Improve and change the model to incorporate other parameters, remove outliers 

from noisy IWAVE frequency data 

• Implement the Kalman Filter as a real-time LLO monitoring system to further 

improve absorption estimation and other parameter estimations

• Combine this time evolution ( 1 eigenmode over time) behavior with spatial 

evolution (several eigenmodes) behavior to create a stronger mirror degradation 

monitor
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Any Questions?
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In-Depth Kalman Filter Analysis
𝑨𝒌 represents the state transition model used to the previous state 𝒙𝒌|𝒌−𝟏 and 𝑩𝒌

represents the input-control model. The input-control model is applied to the control-

vector 𝒖𝒌 and the state matrix is applied to the state-vector 𝒙𝒌|𝒌−𝟏. The process noise is 

represented by which in this case is a univariate normal distribution with covariance 

𝑸𝒌.

𝒙𝒌|𝒌−𝟏 = 𝑨𝒌𝒙𝒌|𝒌−𝟏 +𝑩𝒌𝒖𝒌
𝑷𝒌𝒌−𝟏 = 𝑨𝒌𝑷𝒌−𝟏|𝒌−𝟏𝑨𝒌

𝑻 +𝑸𝒌

Calculating Kalman Gain:

𝑺𝒌 = 𝑪𝒌𝑷𝒌|𝒌−𝟏𝑪𝒌
𝑻 + 𝑹𝒌

𝑲𝒌 = 𝑷𝒌|𝒌−𝟏𝑪𝒌
𝑻𝑺𝒌

−𝟏

Updating Estimate with Measurement and updating error covariance 

𝒚𝒌 = 𝒛𝒌 − 𝑪𝒌
𝑻𝒙𝒌|𝒌−𝟏

𝒙𝒌|𝒌 = 𝒙𝒌|𝒌−𝟏 +𝑲𝒌𝒚𝒌
𝑷𝒌|𝒌 = (𝑰 − 𝑲𝒌𝑪𝒌)𝑷𝒌|𝒌−𝟏
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