
Draft version July 9, 2018
Typeset using LATEX twocolumn style in AASTeX62

Extending the reach of gravitational-wave detectors with machine learning

Tri Nguyen

ABSTRACT

We apply Long Short-Term Memory (LSTM) Neural Networks as a time-series regression analysis

technique to filter instrumental noises from gravitational-wave detectors at LIGO. Unlike traditional

neural networks, LSTM networks can store and use information from their past inputs, and thus is

robust in handling sequential data like gravitational-wave signals. Once trained on the detector noise

data, an LSTM network should be able to learn, predict, and subtract both the linear and non-linear

noise coupling mechanisms. This would result in a sensitivity improvement and allow the detection of

gravitational-wave sources currently below the noise floor. In this paper, I discuss our analysis pipeline

and current progress.

1. INTRODUCTION

1.1. Noise Regression Analysis at LIGO

The Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) is the world’s largest gravitational-wave

observatory. Adopting a Michelson interferometer de-

sign, LIGO detects passing gravitational waves by mea-

suring the induced differential arm length (DARM) be-

tween its two perpendicular 4-km arms (Adhikari 2004;

Tiwari et al. 2015; LIGO Scientific Collaboration 2007).

Since the 2015 sensitivity upgrade (The LIGO Scientific

Collaboration 2015), LIGO has observed signals from

multiple stellar-mass black-hole and neutron-star merg-

ers (Abbott, B. P. et al 2016). However, the gravita-

tional waves from many of these objects are still lying be-

low the detector sensitivity limit. LIGO’s noises are con-

sisted of instrumental and environmental sources, each

coupling to the DARM with a different, both linear and

non-linear, mechanism. A detailed study of these mech-

anisms would allow us to filter out these noises, improve

LIGO’s sensitivity, and make gravitational-wave detec-

tions a more routine occurrence.

The current regression method at LIGO is based

on the Wiener-Kolmogorov filter, which minimizes the

squared error between the DARM channel and the pre-

dicted noises from the physical environmental minor

(PEM) channels (Tiwari et al. 2015; LIGO Scientific

Collaboration 2007). The Wiener filter, however, fails

to remove the non-linear contributions. In fact, char-

acterizing and filtering out these non-linear noises has

proven to be a challenging process, because the coupling

mechanisms are often sophisticated. For example, two

or more noise sources may interfere before coupling to

the DARM.

1.2. Neural Networks as a Noise-Filtering Technique

Despite the complexity of the non-linear coupling

mechanisms, a neural network may be able to learn

them. Neural Networks is a non-parametric, supervised

machine learning algorithm often used in data classi-

fication and clustering. Modeled loosely after a human

brain, a typical network may consist of up to a few thou-

sands of nodes, each carrying parameters characterizing

the features of the data. The network learns by looping

over a labeled dataset (called the training set) and min-

imizing a set loss function via gradient descent. Once

sufficiently trained, it is capable of recognizing highly

complex patterns, such as language models, stock mar-

ket, etc.

To filter LIGO’s noise sources, we used Long Short-

Term Memory (LSTM) networks, a special network ar-

chitecture that specializes in processing sequential in-

put. A major strength of LSTM networks over tradi-

tional networks is their ability to store and use informa-

tion from their past inputs. As a result, LSTM networks
are capable of taking into account the long-term depen-

dencies in the data (Olah 2015). They are frequently

used in speech recognition, grammar learning, and even

DNA pattern recognition (Karpathy 2015). Given a

sufficient amount of training data, an LSTM network

should be able to learn, predict, and subtract both lin-

ear and non-linear noise coupling mechanisms, leading

to an improvement in LIGO’s sensitivity.

1.3. Outline

This paper is structured as follows. Section 2 discusses

the objectives of the network, the metrics to measure

its performance, and the data. Section 3 describes the

procedures used to build an optimal analysis pipeline.

Section 4 and section 5 discuss the current progress and

future plan of the project.

2

Figure 1. Left: Mock resonant noise spectra with resonant frequency w0 5 Hz and quality factor Q 100. Right: the DARM
spectra on August 14, 2017.

2. OBJECTIVES

2.1. Noise Coupling Mechanisms

LIGO’s noise sources can be categorized into funda-

mental and non-fundamental noises (The LIGO Scien-

tific Collaboration 2015). Fundamental noises are those

imposed by quantum and statistical mechanics; these

include photon shot noise, thermal noise, etc. Because

fundamental noises define the baseline sensitivity limit,

they can only be reduced by improving the detector de-

sign. On the other hand, non-fundamental noises con-

sist of instrumental and environmental effects, such as

seismic noise, magnetic noise, beam jitter, etc. They

can be removed, given that there exist witness channels

monitoring the disturbance.

When a gravitational wave passes through the detec-

tor, the measured DARM will be composed of both the

gravitational-wave signal and the noises. Consider the

simple case of one witness channel w(t), the DARM out-

put is:

hm(t) = hs(t) + f [w(t)]

where hs is the signal and f is some (usually) non-

linear function, called the transfer function, coupling the

DARM output and the output of the witness channel.

When there are multiple channels, the transfer function

f may take in all of them.

The goal of the network is to predict the transfer func-

tion f of the non-fundamental noise sources and subse-

quently subtract them, while keeping the gravitational-

wave signals and the fundamental noises intact.

2.2. Criteria for Success

Given a witness channel wi at some time t, the net-

work will predict a transfer function f̃ and the DARM

h̃(t′) at some time t′ > t, where

h̃(t′) = f̃ [wi(t)], t′ > t

In general, functional forms of the true function f and

the predicted function f̃ are not known. The network is

trained by minimizing the mean square error (MSE) or

the mean absolute error (MAE) between the true DARM

h and the predicted DARM h̃.

However, because both the MSE and MAE are sen-

sitive to data pre-processing, they do not provide a

meaningful absolute metric to evaluate the network’s

performance (though they may serve well as a rela-

tive metric to compare between different networks). In-

stead, the performance is evaluated using the coherence

c(f) between the DARM h(t′) and the clean DARM

hc(t
′) = h(t′) − h̃(t′). The coherence measures the cor-

relation between these two channels at each frequency,

and is computed from their Fourier transforms. It is re-

lated to the ideal noise suppression factor r(f) by the

relation:

r(f) =
1√

1− c2(f)
, 0 ≤ c(f) ≤ 1∀f

For example, if the coherence between h(t′) and hc(t
′) at

some frequency is 0.9, the noise reduction factor at that

frequency will be approximately 2.3 (M Coughlin 2014).

The goal of this project is to achieve a noise reduction

factor of 2, corresponding to a coherence of about 0.87.

2.3. Data

We perform the analysis on both mock and real

gravitational-wave data. Mock data provide a reliable

gauge to measure the network capacity, or the ability

to learn complex functions. They are generated by cou-

pling white noises with the DARM output by a known,

non-linear function. For example, resonant noises are

generated using the resonance function:

y(w) =
x(w)

w2
0 − w2 + iw0w

Q

3

Figure 2. A typical LSTM layer contains four interacting sub-layers. Refer to Olah 2015.

where x is the witness channel, w0 is the resonant an-

gular frequency and Q is the quality factor describing

how under-damped the resonator is. Note though the

coupling is in the frequency domain, the analysis is per-

formed on the time domain. Mock data can also be

generated from multiple channels. For example, bilin-

ear data are generated by adding the product of angu-

lar sensing noise (from ASC channels) and beam spot

motion (from beam spot channels) to the DARM. To

ensure the network only removes the targeted noises, we

inject gravitational-wave signals and other noise sources

(called the bucket noises) into the mock, and later check

if they are removed or distorted.

Ultimately, however, we want the network to perform

well on real data. While we do not know the true cou-
pling mechanisms, we expect the mock data to simi-

lar enough to real data and sufficiently capture their

complexity. Alternatively, in the DARM power spectral

density, there are some known calibration lines. In our

data, we check if the network successfully subtracts the

calibration line at 7 Hz and the AC power line at 60 Hz.

The analysis in this paper is performed on time series

over a duration of 2048 seconds, with the sample rate of

512. The number of samples is 1,048,576.

3. BUILDING THE NETWORK

Building an optimal network requires carefully choos-

ing the right architecture and hyperparameters. Hyper-

parameters are those cannot be learn by the network

(e.g. the gradient descent learning rate, the regulariza-

tion strength, etc.). They govern the learning process,

and can greatly affect the optimization and performance

of a network. Different networks requires different sets

of hyperparameters.

Finding the optimal architecture and hyperparame-

ters is an empirical process. In other words, it requires

experimenting with different networks and hyperparam-

eters and evaluate their relative performance. In our

analysis, we start by picking a simple network architec-

ture (as the training time will be much faster) and in-

creasing the complexity as needed. Initially, we want the

network to overfit a small training dataset to make sure

it is capable of learning the transfer function. Then,

we reduce the overfitting by choosing the optimal hy-

perparameters via a machine learning process called hy-

perparameter tuning (or hyperparameter optimization),

which will be explained in more details below.

3.1. Network Architecture

LSTM Architecture—As briefly discussed in section 1.2,

we use the LSTM network architecture because they can

store and use information from past inputs. Figure 2

shows the structure of a typical LSTM layer with four

interacting sub-layers. Both the past input and output

vectors xt−1 and ht−1, along with the current input xt,

are fed into the network to calculate the current output

ht. The input and output xt and ht are subsequently

used to determine the future output ht−1.

The parameters of the LSTM architecture are the size

of output vector h, the activation function of the neural

network layer, the bias and weight initializers, etc.

Current Architecture—The current analysis pipeline con-

sists of five separate LSTM networks. Each network uses

4

a different set of hyperparameters and optimization al-

gorithms, and tunes on a different frequency band. The

frequency cutoffs are respectively 3-9 Hz, 10-13 Hz, 20-

30 Hz, 30-41 Hz, and 57-63 Hz. We employ multiple

small networks across multiple frequency bands instead

of one big network, because they allow us to easily in-

ject and test out new noise sources. For example, in-

jecting a source at 5 Hz only requires us to re-train the

first network, not the entire pipeline. In addition, each

small network is significantly easier and faster to train.

Because the networks are trained separately, we may

further speed up training via parallel computing on a

computer cluster, a process that cannot be done easily

if we use one big network.

Each network contains multiple LSTM layers followed

by multiple fully-connected (Dense) layers. Each LSTM

layer returns a sequence which get fed into the next

LSTM layer (with the exception of the last LSTM layer,

which returns a vector for the Dense layer). The full

network structure, in the case of one witness channel, is

summarized in Table 1. In total, there are 5,601 train-

able parameters (weights and biases). All networks use

the Adaptive Moment Estimation, or adam, optimiza-

tion algorithm (Kingma & Ba 2014). The biases are

initialized as ones, and the initial weights are sampled

from a uniform distribution within (−σ, σ), where

σ =

√
6

nin + nout

Here nin and nout are the number of features of the input

and output vector respectively. This initializer is called

the Xavier uniform initializer. Alternatively, the initial

weights may be sampled from a Gaussian distribution

with mean 0 and standard deviation σ (Glorot & Bengio

2010). This is known as the Xavier normal initializer.

3.2. Hyperparameter Tuning

We apply the holdout cross-validation method. In par-

ticular, the data are partitioned into a training set and

a test set. After each iteration through the training set,

the network runs on the test set. As discussed in sec-

tion 2.2, the test performance is evaluated by comput-

ing the MSE or MAE between the true DARM and the

predicted DARM. This provides an insight on how the

network performs on an independent, unknown dataset.

We choose the hyperparameters that result in the small-

est MSE or MAE. In our analysis, we divide the time

series into two equal subsets, with the training set being

the first half. The size of the training and test set is

524,288 (as described in section 2.3), which should be

sufficient to capture all data features.

To search for the optimal hyperparameters, we apply

the algorithms described below:

Layers Output Shape # Params

LSTM 1 (N, 1, 16) 1152

LSTM 2 (N, 1, 8) 800

LSTM 3 (N, 1, 8) 544

LSTM 4 (N, 1, 8) 544

LSTM 5 (N, 1, 8) 544

LSTM 6 (N, 1, 8) 544

LSTM 7 (N, 1, 8) 544

LSTM 8 (N, 1, 8) 360

Dense 1 (N, 8) 56

Dense 2 (N, 8) 72

Dense 3 (N, 8) 72

Dense 4 (N, 8) 72

Dense 5 (N, 8) 72

Dense 6 (N, 8) 72

Dense 7 (N, 8) 72

Dense 8 (N, 8) 72

Dense 9 (N, 8) 9

Table 1. Current architecture of each LSTM network, in
the case of one witness channel. Here N is the size of the
dataset.

Figure 3. Random search explores the parameter space
more efficient than grid search (Bergstra & Bengio 2012).

Random Search—As its name suggested, random

search involves randomly sampling the hyperparame-

ters given some prior guesses on them. Scale parameters

(e.g. learning rate, learning rate decay, regularization

strength, etc.) are sampled from a Jeffreys prior, and

location parameters (e.g. dropout, recurrent dropout,

etc.) are sampled from a uniform prior. In cases where

we also tune discrete parameters like the activation func-

tion, the parameter will be chosen with equal probability

from a list of possible choices.

At first, the algorithm seems counterintuitive. Why

not pick a list of possible value for each parameter and

systematically test out all possible combinations? This

method is known as the grid search; it has been shown to

be much less efficient in scanning the parameter space.

5

Figure 4. Gaussian process regression for hyperparameter tuning. In this example, the algorithm predicts the number of
hidden units that will maximize the validation accuracy of a Dense neural network. Refer to Shevchuk 2016.

This is because some parameters may greatly affect on

the cost function, while others only have a second-order

effect. Given the same amount of trials, random search

allows the exploration of more values for each parameter

(see Figure 3).

Random search is a simple algorithm for hyperpa-

rameter tuning. However, there exist more advanced

algorithms that employ probability theories to predict

the mapping between the parameters and the validation

loss. In general, these algorithms decide a set of param-

eters the network should try based on previous obser-

vations. In this analysis, we use the Gaussian Process

regression and the Tree-structured Parzen Estimators

(TPE).

Gaussian Process Regression—Gaussian process can be

thought as a distribution over stochastic (random) func-

tions. For each value of x in the parameter space, the

Gaussian process regression assumes the loss function

y = f(x), which is a stochastic function whose noises

follow a Gaussian distribution with mean µ and stan-

dard deviation σ. This is a reasonable assumption for

the loss of a neural network because of the many random

processes involved in training (e.g. dropout, initializa-

tion, etc.). In the case of multiple parameters, the noises

follow a multivariate Gaussian distribution. Figure 4

shows an example of the Gaussian process regression for

hyperparameter tuning.

Given a prior function distribution and some past

evaluations (hyperparameters and losses), the algorithm

predicts the loss for each point in the parameter space

by constructing the posterior distribution1. The net-

work is then tested on the point with the minimum ex-

pected loss, to within about 2-3 standard deviations of

the mean.

The greatest advantage of the Gaussian process re-
gression is the ability to account for the uncertainty of

the calculation and the relation between each hyperpa-

rameter. However, the algorithm does have some impor-

tant drawbacks. For example, it is tricky to incorporate

categorical parameters (e.g. activation function, initial-

izer, etc.) into the prediction. It is also difficult to se-

lect the right hyperparameters for the Gaussian process,

such as the prior function distribution. Lastly, when the

number of parameters exceed a few dozen, the algorithm

becomes computationally expensive (Shevchuk 2016).

Tree-structured Parzen Estimators (TPE)—In TPE, the

collected observations are divided into two groups: one

with the best validation performance and one with all

1 For a detailed mathematical calculation, please refer to Do &
Lee 2008

6

Figure 5. TPE predicts the best parameters by constructing
a likelihood ratio of the two groups. Refer to Shevchuk 2016.

the others. The algorithm picks the parameter that is

most likely belong to the first group and less likely be-

long to the second group. It does so by constructing

the likelihood probability (unlike the Gaussian process,

which constructs the posterior probability). In partic-

ular, TPE picks the parameter x with the highest ex-

pected improvement:

r(x) =
l(x|D)

g(x|D)

where l(x|D) and g(x|D) are the likelihoods of x be-

long to first and second groups respectively. and g(x)

is a probability being in the second group. Figure 5

shows how TPE predicts the next parameters the net-

work should try.

In general, TPE is less sensitive to random noise than

the Gaussian process is. It also has fewer hyperparame-

ters, and allows the prediction for categorical parameters

more easily. However, the biggest disadvantage of TPE

is that it cannot take into account the relation between

parameters because it selects the parameters indepen-

dently.

3.3. Machine Learning Framework

Our current machine learning framework for noise re-

gression is DeepClean2. DeepClean is written on top of

Keras, a high-level Python neural networks API which

allows fast and flexible creation and development of neu-

ral network models (including Dense, LSTM, Convolu-

2 Available at https://git.ligo.org/rich.ormiston/DeepClean

tion Net, etc.). Keras is a Google Brain’s TensorFlow

backend. It is able to run across multiple platforms

(CPUs, GPUs, TPUs) and thus allows us to speed up

training by parallelizing our calculation across GPU or

TPU cores.

DeepClean is capable of creating multiple networks,

each with a different architecture, to subtract noises

across multiple frequency bands. DeepClean trains and

tests the networks independently. On each run, it loops

over each frequency band and uses the assigned network

to perform the subtraction; the final subtraction is a

combined result of all networks. Figure 6 shows an

example DeepClean output, in which it subtracts the

beam jitter noise from LIGO’s first observational run

O1. DeepClean also has a hyperparameter tuning mod-

ule, which is still under development. Current progress

will be discussed below in section 4.

Figure 6. In this example of DeepClean output, the net-
works subtract the beam jitter noise from LIGO’s first ob-
servational run O1.

4. CURRENT PROGRESS

4.1. DeepClean Hyperparameter Tuning

The majority of my progress has been on developing

a hyperparameter tuning module and user interface for

DeepClean. The module is at the final stage of comple-

tion: the random search and TPE are ready to be used,

while the Gaussian process regression is currently under

test. It is also worth noting that the Gaussian process

currently implemented is not a multivariate Gaussian

process; it chooses each parameter independently (like

TPE). Future work will be discussed in section 5.

4.1.1. Progress

7

Figure 7. Top: The DARM spectral density on August 14, 2017 before (left) and after (right) hyperparameter tuning. The
frequency band is 3-9 Hz. In this case, hyperparameter tuning results in a better subtraction of the calibration line at 7 Hz.
Bottom: The DARM spectral density on August 14, 2017 before (left) and after (right) hyperparameter tuning. The frequency
band is 57-63 Hz. In this case, hyperparameter tuning does not result in a better subtraction of the AC power line at 60 Hz.

8

Figure 8. The DARM spectral density on August 14, 2017
and total subtraction before (top) and after (bottom) hyper-
parameter tuning.

Parameters Distribution Values

Activation Categorical Tanh, Relu

Bias initializer Categorical Zeros, Ones

Weight initializer Categorical Xavier uniform, normal

Learning rate Log-uniform x ∈ (1e− 6, 1e− 2)

Learning rate decay Log-uniform x ∈ (1e− 8, 1e− 6)

Dropout Uniform x ∈ (0.1, 0.9)

Table 2. Hyperparameter space.

Figure 7 shows the DARM spectral density on August

14, 2017 and the subtraction in the frequency bands 3-9

Hz and 57-63 Hz before and after hyperparameter tun-

ing. The hyperparameter space is summarized in Table

2, and the number of trials is 100. In Figure 7, these fre-

quency bands are highlighted because they include the

calibration line at 7 Hz and the AC power line at 60 Hz

respectively. In the 3-9 Hz band, tuning results in a bet-

ter subtraction of the calibration line. However, this is

not the case for the subtraction of the AC frequency line

in the 57-63 Hz band, where the un-tuned network gives

a slightly better performance. Furthermore, both net-

works overfit the training data. The un-tuned network

uses the default adam (the gradient descent algorithm)

parameters, which are known among the machine learn-

ing community to perform well on many problems. In

addition, because the parameter space is large, searching

over only 100 sets of parameters might not be sufficient.

Figure 8 shows the total subtraction before and after

tuning. Note that the frequency band of the intermedi-

ate network (Loop 1) is changed from 10-14 Hz to 10-13

Hz in the latter case to avoid collision with a spectra

line at about 14 Hz (which causes the subtraction to

add noises to the DARM).

4.1.2. Challenges

Initially, the hyperparameter module did not share the

same data preprocessing procedure with DeepClean run-

ning module. In particular, the hyperparameter module

did not scale the standard deviation of the time series to

one (this process helps training to converge faster). As a

result, the optimal parameters suggested by tuning were

not the optimal parameters for the running module, and

the subtraction failed spectacularly.

As mentioned above, it is possible for the subtraction

to add more noise to the DARM. I suspect this is due to

the network’s attempt to subtract a noise feature which

cannot be subtracted. If this is the case, then the fre-

quency bands must be chosen more carefully such that

they do not include any non-removable line.

4.2. Resonant Noise

A part of my work is dedicated to generating resonant

noises and applying the subtraction algorithm on them.

4.2.1. Progress

Figure 9 shows the total subtraction and the subtrac-

tion in the 57-63 Hz frequency band. The resonant fre-

quency is about 13.15 Hz, and the quality factor is 1000.

In the 57-63 Hz band, the network has successfully sub-

tracted the resonant noises and left out the 60-Hz AC

power line, which in this case is not supposed be re-

moved. There is currently no tuning result on this data.

4.2.2. Challenges

Initially, the normalization of the resonant noise did

not match the scaling of the bucket noise. As the result,

either the resonant noise or the bucket noise dominated

9

Figure 9. The DARM spectral density dominant by resonant white noises. The resonant frequency is about 13.15 Hz, and
the quality factor is 1000. Top: The subtraction in the 57-63 Hz frequency band. The network has successfully subtracted the
resonant noises and left out the 60-Hz AC power line. Bottom: The subtraction over all frequency band.

the spectra. In both cases, the networks failed to pro-

duce any meaningful results.

5. FUTURE WORK

5.1. Multivariate Gaussian Process

As mentioned in section 4.1, the Gaussian process in

DeepClean hyperparameter tuning is a 1-dimensional

Gaussian process. This is not ideal, because it eliminates

the algorithm’s greatest advantage over TPE: the abil-

ity to take into account the relation between parameters.

My current plan is to develop a multivariate Gaussian

process regression.

5.2. Resonant Noise

Ultimately, we want to vary the resonant frequency

and the quality factor, and study the behavior of the

networks. At the moment, the normalization of the res-

onant noises is done by scaling the time series by an

arbitrary factor of 10−13. However, because the ampli-

tude of the power spectra density depends greatly on

the resonant frequency and the quality factor, a more

mathematical scaling system is needed.

5.3. Selecting witness channels

Not all witness channels carry the same weight. Some

are more important for the subtraction, while some only

have a second-order effect. Furthermore, some channels

may share the same, correlated information (degener-

acy). Currently, the data include a selected few chan-

nels. Ultimately, we would like to understand which

channels are important and should be included. We can-

not simply use all channels because the networks will

become too hard to train (too many features). More

importantly, training will become too expensive in both

running time and memory. To understand the weights

of each channel requires a good understanding of the

underlying physics. However, if all hope is lost, a corre-

lation study (using machine learning techniques such as

principle component analysis, or PCA) and/or an abla-

tion study may be attempted.

10

REFERENCES

Abbott, B. P. et al. 2016, Phys. Rev. Lett., 116, 061102

Adhikari, R. 2004, PhD thesis, Massachusetts Institute of

Technology, Massachusetts, USA

Bergstra, J., & Bengio, Y. 2012, JMLR, 13

Do, C. B., & Lee, H. 2008, Lecture notes on Gaussian

processes, Stanford CS229

Glorot, X., & Bengio, Y. 2010, in Proceedings of Machine

Learning Research, Vol. 9, Proceedings of the Thirteenth

International Conference on Artificial Intelligence and

Statistics, ed. Y. W. Teh & M. Titterington (Chia

Laguna Resort, Sardinia, Italy: PMLR), 249–256

Karpathy, A. 2015, The Unreasonable Effectiveness of

Recurrent Neural Networks

Kingma, D. P., & Ba, J. 2014, CoRR, abs/1412.6980,

arXiv:1412.6980

LIGO Scientific Collaboration. 2007, arXiv, 0711.3041

M Coughlin, J Harms, e. a. 2014, Classical and Quantum

Gravity, 31, 215003

Olah, C. 2015, Understanding LSTM Networks

Shevchuk, Y. 2016, Hyperparameter optimization for

Neural Networks

The LIGO Scientific Collaboration. 2015, Classical and

Quantum Gravity, 32, 074001

Tiwari, V., et al. 2015, Class. Quant. Grav., 32, 165014

